Motivic cohomology of fat points in Milnor range via formal and rigid geometries
From MaRDI portal
Publication:2081433
DOI10.1007/s00209-022-03122-4OpenAlexW3198296657WikidataQ114231047 ScholiaQ114231047MaRDI QIDQ2081433
Publication date: 13 October 2022
Published in: Mathematische Zeitschrift (Search for Journal in Brave)
Full work available at URL: https://arxiv.org/abs/2108.13563
rigid geometryMilnor \(K\)-theorymotivic cohomologyChow groupalgebraic cyclealgebraic de Rham cohomologyformal schemeTate algebrasingular schemede Rham-Witt form
Valuations, completions, formal power series and related constructions (associative rings and algebras) (16W60) Algebraic cycles (14C25) Higher symbols, Milnor (K)-theory (19D45) Formal power series rings (13F25) Formal neighborhoods in algebraic geometry (14B20)
Cites Work
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- A moving lemma for relative 0-cycles
- Algebraic cycles and higher K-theory
- Topological Stein factorization; cutting
- Milnor \(K\)-theory is the simplest part of algebraic \(K\)-theory
- Irreducible components of rigid spaces
- The additive dilogarithm
- Rigid analytic geometry and its applications
- Component groups of purely toric quotients.
- Milnor \(K\)-theory of rings, higher Chow groups and applications
- Motivic cohomology of fat points in Milnor range
- Foundations of rigid geometry. I
- \(K\)-theory and patching for categories of complexes
- Motives with modulus. III: The categories of motives
- Lectures on formal and rigid geometry
- Éléments de géométrie algébrique. IV: Étude locale des schémas et des morphismes de schémas. (Séconde partie)
- Éléments de géométrie algébrique. IV: Étude locale des schémas et des morphismes de schémas (Quatrième partie). Rédigé avec la colloboration de J. Dieudonné
- Algebraic \(K\)-theory and quadratic forms. With an appendix by J. Tate
- Rigid analytic spaces
- Éléments de géométrie algébrique. I: Le langage des schémas. II: Étude globale élémentaire de quelques classe de morphismes. III: Étude cohomologique des faisceaux cohérents (première partie)
- The generalized de Rham-Witt complex over a field is a complex of zero-cycles
- Milnor 𝐾-theory of local rings with finite residue fields
- Regulators on additive higher Chow groups
- RECIPROCITY LAWS AND THE STABLE RANK OF POLYNOMIAL RINGS
- Higher Chow groups with modulus and relative Milnor $K$-theory
- HOMOLOGY OF THE FULL LINEAR GROUP OVER A LOCAL RING, AND MILNOR'SK-THEORY
- Motives with modulus, I: Modulus sheaves with transfers for non-proper modulus pairs
- Motives with modulus, II: Modulus sheaves with transfers for proper modulus pairs
- De Rham–Witt sheaves via algebraic cycles
- RELATIVE CYCLES WITH MODULI AND REGULATOR MAPS
- Motifs des variétés analytiques rigides
- Divisor class groups of singular surfaces
- Introduction to Algebraic K-Theory. (AM-72)
- On the De Rham cohomology of algebraic varieties
- On the De Rham cohomology of algebraic varieties