General decay for weak viscoelastic equation of Kirchhoff type containing Balakrishnan-Taylor damping with nonlinear delay and acoustic boundary conditions
DOI10.1186/s13661-022-01633-xzbMath1498.35091OpenAlexW4288684906MaRDI QIDQ2081695
Jum-Ran Kang, Mi Jin Lee, Min Su Yoon
Publication date: 30 September 2022
Published in: Boundary Value Problems (Search for Journal in Brave)
Full work available at URL: https://doi.org/10.1186/s13661-022-01633-x
acoustic boundary conditionsgeneral decay rateBalakrishnan-Taylor dampingnonlinear delayweak viscoelastic equation
Asymptotic behavior of solutions to PDEs (35B40) Initial-boundary value problems for second-order hyperbolic equations (35L20) Partial functional-differential equations (35R10) PDEs in connection with mechanics of deformable solids (35Q74) Second-order quasilinear hyperbolic equations (35L72)
Related Items (1)
Cites Work
- Unnamed Item
- Unnamed Item
- General decay of solutions for Kirchhoff type containing Balakrishnan-Taylor damping with a delay and acoustic boundary conditions
- Energy decay for a viscoelastic Kirchhoff plate equation with a delay term
- Some new nonlinear retarded sum-difference inequalities with applications
- General decay rate estimate for the energy of a weak viscoelastic equation with an internal time-varying delay term
- General decay of solutions of a weak viscoelastic equation
- Stabilization of the wave equation with boundary or internal distributed delay.
- Large data existence theory for three-dimensional unsteady flows of rate-type viscoelastic fluids with stress diffusion
- Existence and general decay of Balakrishnan-Taylor viscoelastic equation with nonlinear frictional damping and logarithmic source term
- Global well-posedness of nonlinear wave equation with weak and strong damping terms and logarithmic source term
- Arbitrary rate of decay for a viscoelastic equation with acoustic boundary conditions
- Asymptotic behavior of second sound thermoelasticity with internal time-varying delay
- On a system of nonlinear wave equations with Balakrishnan-Taylor damping
- General decay of solutions for a weak viscoelastic equation with acoustic boundary conditions
- Exponential and polynomial decay for a quasilinear viscoelastic equation
- Wave Equation with Acoustic/Memory Boundary Conditions
- Exponential stability and blow up for a problem with Balakrishnan–Taylor damping
- Stability and Instability Results of the Wave Equation with a Delay Term in the Boundary or Internal Feedbacks
- Acoustic boundary conditions
- Exponential Decay Rates for Structural Acoustic Model with an Overdamping on the Interface and Boundary Layer Dissipation
- General decay of solutions of quasilinear wave equation with time‐varying delay in the boundary feedback and acoustic boundary conditions
This page was built for publication: General decay for weak viscoelastic equation of Kirchhoff type containing Balakrishnan-Taylor damping with nonlinear delay and acoustic boundary conditions