On the \(p\)-torsion of the Tate-Shafarevich group of abelian varieties over higher dimensional bases over finite fields
DOI10.5802/jtnb.1211OpenAlexW4307167615MaRDI QIDQ2086417
Publication date: 25 October 2022
Published in: Journal de Théorie des Nombres de Bordeaux (Search for Journal in Brave)
Full work available at URL: https://arxiv.org/abs/2203.05798
étale and other Grothendieck topologies and cohomologies\(p\)-torsion in characteristic \(p > 0\)abelian varieties of dimension \(> 1\)arithmetic ground fields for abelian varietiesTate-Shafarevich groups of abelian varieties over higher dimensional bases over finite fields
Abelian varieties of dimension (> 1) (11G10) Étale and other Grothendieck topologies and (co)homologies (14F20) Arithmetic ground fields for abelian varieties (14K15)
Cites Work
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- On the Tate-Shafarevich group of abelian schemes over higher-dimensional bases over finite fields
- Finite locally free group schemes in characteristic \(p\) and Dieudonné modules
- Smoothness, semi-stability and alterations
- On an analogue of the conjecture of Birch and Swinnerton-Dyer for abelian schemes over higher dimensional bases over finite fields
- Séminaire de géométrie algébrique du Bois Marie 1966/67, SGA 6.Dirigé par P. Berthelot, A. Grothendieck et L. Illusie, Avec la collaboration de D. Ferrand, J. P. Jouanolou, O. Jussilia, S. Kleiman, M. Raynaud et J. P. Serre. Théorie des intersections et théorème de Riemann-Roch
- Critères de platitude et de projectivité. Techniques de platification d'un module. (Criterial of flatness and projectivity. Technics of flatification of a module.)
- Séminaire de géométrie algébrique du Bois Marie 1960/61 (SGA 1), dirigé par Alexander Grothendieck. Augmenté de deux exposés de M. Raynaud. Revêtements étales et groupe fondamental. Exposés I à XIII. (Seminar on algebraic geometry at Bois Marie 1960/61 (SGA 1), directed by Alexander Grothendieck. Enlarged by two reports of M. Raynaud. Ètale coverings and fundamental group)
- Néron Models
- Galois Groups and Fundamental Groups
This page was built for publication: On the \(p\)-torsion of the Tate-Shafarevich group of abelian varieties over higher dimensional bases over finite fields