Helmut Salzmann and his legacy
From MaRDI portal
Publication:2087444
DOI10.1515/advgeom-2022-0023OpenAlexW4387625937MaRDI QIDQ2087444
Publication date: 21 October 2022
Published in: Advances in Geometry (Search for Journal in Brave)
Full work available at URL: https://doi.org/10.1515/advgeom-2022-0023
Biographies, obituaries, personalia, bibliographies (01A70) Topological linear incidence structures (51H10) History of geometry (51-03)
Cites Work
- Generalized Hughes Planes
- Elations in four-dimensional planes
- Pseudo-Homogeneous Coordinates for Hughes Planes
- Simply Connected Homogeneous Spaces
- Topologies for Homeomorphism Groups
- Kompakte zweidimensionale projektive Ebenen
- Kompakte zweidimensionale projektive Ebenen
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- 16-dimensional compact projective planes with a large group fixing two points and only one line
- Reminiscences of Günter Pickert
- Semi-simple groups of compact 16-dimensional planes
- Die Oktavenebene als Translationsebene mit großer Kollineationsgruppe. (The Cayley plane as a translation plane with a large collineation group)
- Sur les groupes doublement transitifs continus. Correction et compléments
- Kompakte projektive Ebenen
- Topological projective planes
- Groupes de Lie compacts de transformations de l'espace euclidien et les sphères comme espaces homogènes
- Homomorphismen topologischer projektiver Ebenen
- Viereckstransitivität der kleinen projektiven Gruppe einer Moufang- Ebene
- Topologische Struktur zweidimensionaler projektiver Ebenen
- On the non-existence of elements of Hopf invariant one
- Groups acting on the 4-sphere
- Kompakte Ebenen mit einfacher Kollineationsgruppe
- Locally homogeneous ANR-spaces
- Compact 16-dimensional projective planes with large collineation groups. III
- Charakterisierung der kompakten, zusammenhängenden Moufang-Hughes- Ebenen anhand ihrer Kollineationen
- Automorphism groups of compact projective planes
- Achtdimensionale lokalkompakte Translationsebenen mit mindestens 17- dimensionaler Kollineationsgruppe. (Eight-dimensional locally compact translation planes with at least 17-dimensionally collineation group)
- Homologies and elations in compact, connected projective planes
- Compact 8-dimensional projective planes with large collineation groups
- Kompakte, 8-dimensionale projektive Ebenen mit großer Kollineationsgruppe
- Baer-Kollineationsgruppen der klassischen projektiven Ebenen
- Compact 16-dimensional projective planes with large collineation groups
- Collineation groups of compact connected projective planes
- Homogene affine Ebenen
- Dimensions of compact transformation groups
- Homogene kompakte projektive Ebenen
- Geometrisch homogene vierdimensionale reelle Divisionsalgebren
- Vierdimensionale stabile Ebenen
- Automorphismengruppen 8-dimensionaler Ternärkörper
- Characterization of 16-dimensional Hughes planes
- Compact 16-dimensional projective planes
- Large automorphism groups of 8-dimensional projective planes are Lie groups
- On the dimensions of automorphism groups of eight-dimensional ternary fields. II
- On the dimensions of automorphism groups of 8-dimensional ternary fields. I
- Baer subplanes
- Über stetige algebraische Körper
- Zur Begründung der projektiven Geometrie
- On the classification of 16-dimensional planes
- Stable planes with isotropic points
- Compact 16-dimensional projective planes with large collineation groups. II
- Hurwitzsche Ternärkörper
- Compact planes of Lenz type III
- 4-dimensionale Translationsebenen mit 8-dimensionaler Kollineationsgruppe
- 4-dimensionale Translationsebenen mit irreduzibler Kollineationsgruppe
- Homogeneous translation groups
- Groups of compact 8-dimensional planes: conditions implying the Lie property
- Transitive actions of locally compact groups on locally contractible spaces
- Metric collineations and inverse problems
- 16-dimensional compact projective planes with a collineation group of dimension \(\geq 35\)
- 16-dimensional compact projective planes with a large group fixing two points and two lines
- Zur Klassifikation topologischer Ebenen. I, II
- Polaritäten von Moulton-Ebenen
- Kollineationsgruppen ebener Geometrien
- Topological planes
- Zur Klassifikation topologischer Ebenen. III
- Homomorphismen komplexer Ternärkörper
- Geometries on surfaces
- Characterization of the three classical plane geometries
- Kompakte vier-dimensionale Ebenen
- Nicht-desarguessche 4-dimensionale Ebenen
- Kollineationsgruppen kompakter, vier-dimensionaler Ebenen
- Zusammenhängende Quasikörper mit Zentrum
- Kollineationsgruppen kompakter 4-dimensionaler Ebenen. II
- Homogene 4-dimensionale affine Ebenen. (Homogeneous 4-dimensional affine planes)
- 4-dimensionale Translationsebenen. (4-dimensional translation planes)
- Kompakte, vier-dimensionale projektive Ebenen mit 8-dimensionaler Kollineationsgruppe
- Baer-Unterebenen 4-dimensionaler Ebenen
- Reelle Kollineationen der komplexen projektiven Ebene
- 4-dimensional projective planes of Lenz type III
- Die komplex-hyperbolische Ebene
- Sechzehndimensionale lokalkompakte Translationsebenen, deren Kollineationsgruppe \(G_ 2\) enthält. (On sixteen-dimensional locally compact translation planes with collineation group containing \(G_ 2)\)
- Die Bestimmung aller stetigen Fastkörper über dem Körper der reellen Zahlen als Grundkörper
- Ein Satz über die Wirkungsräume geschlossener Liescher Gruppen
- Sur les groupes doublement transitifs continus
- Über den Zusammenhang in topologischen projektiven Ebenen
- Singularitäten unendlich oft differenzierbarer Funktionen
- Near-homogeneous 16-dimensional planes
- Topology and dimension of stable planes: On a conjecture of H. Freudenthal.
- Compact 16-Dimensional Projective Planes with Large Collineation Groups. IV
- Homogeneous compact projective planes.
- 16-dimensional compact projective planes with 3 fixed points
- Compact 8-dimensional Projective Planes
This page was built for publication: Helmut Salzmann and his legacy