Optimal non-symmetric Fokker-Planck equation for the convergence to a given equilibrium
DOI10.3934/krm.2022009zbMath1496.35386arXiv2106.15742OpenAlexW3177438700MaRDI QIDQ2088742
Beatrice Signorello, Anton Arnold
Publication date: 6 October 2022
Published in: Kinetic and Related Models (Search for Journal in Brave)
Full work available at URL: https://arxiv.org/abs/2106.15742
Fokker-Planck equationtime-dependent coefficientshypocoercivityfastest decaynon-symmetric perturbation
Asymptotic behavior of solutions to PDEs (35B40) Stochastic methods (Fokker-Planck, Langevin, etc.) applied to problems in time-dependent statistical mechanics (82C31) Fokker-Planck equations (35Q84) PDEs in connection with statistical mechanics (35Q82)
Cites Work
- Unnamed Item
- Optimal non-reversible linear drift for the convergence to equilibrium of a diffusion
- Optimal linear drift for the speed of convergence of an hypoelliptic diffusion
- On multi-dimensional hypocoercive BGK models
- Propagator norm and sharp decay estimates for Fokker-Planck equations with linear drift
- Finding the jump rate for fastest decay in the Goldstein-Taylor model
- On optimal decay estimates for ODEs and PDEs with modal decomposition
- ON CONVEX SOBOLEV INEQUALITIES AND THE RATE OF CONVERGENCE TO EQUILIBRIUM FOR FOKKER-PLANCK TYPE EQUATIONS
- Étude spectrale minutieuse de processus moins indécis que les autres
- The Markov chain Monte Carlo revolution
- Hypocoercivity
- On Nonnegative Solutions of the Equation $AD + DA' = - C$
This page was built for publication: Optimal non-symmetric Fokker-Planck equation for the convergence to a given equilibrium