Uniformly strong convergence of Kähler-Ricci flows on a Fano manifold
From MaRDI portal
Publication:2090422
DOI10.1007/s11425-021-1928-1OpenAlexW3088227352MaRDI QIDQ2090422
Publication date: 25 October 2022
Published in: Science China. Mathematics (Search for Journal in Brave)
Full work available at URL: https://arxiv.org/abs/2009.10354
Global differential geometry of Hermitian and Kählerian manifolds (53C55) Special Riemannian manifolds (Einstein, Sasakian, etc.) (53C25) Fano varieties (14J45) Ricci flows (53E20) Flows related to complex manifolds (e.g., Kähler-Ricci flows, Chern-Ricci flows) (53E30)
Related Items (4)
Tian's partial \(C^0\)-estimate implies Hamilton-Tian's conjecture ⋮ On the lower boundedness of modified \(K\)-energy ⋮ Algebraic uniqueness of Kähler-Ricci flow limits and optimal degenerations of Fano varieties ⋮ Kähler-Ricci flow for deformed complex structures
Cites Work
- Unnamed Item
- Unnamed Item
- K-polystability of Q-Fano varieties admitting Kähler-Einstein metrics
- Kähler-Einstein metrics along the smooth continuity method
- Partial \(C^0\)-estimate for Kähler-Einstein metrics
- Gromov-Hausdorff limits of Kähler manifolds and algebraic geometry
- Regularity of Kähler-Ricci flows on Fano manifolds
- A new holomorphic invariant and uniqueness of Kähler-Ricci solitons
- Calabi flow, geodesic rays, and uniqueness of constant scalar curvature Kähler metrics
- On Calabi's conjecture for complex surfaces with positive first Chern class
- Modified Futaki invariant and equivariant Riemann-Roch formula
- Deformation of Kähler metrics to Kähler-Einstein metrics on compact Kähler manifolds
- Kähler-Einstein metrics and integral invariants
- Kähler-Einstein metrics and the generalized Futaki invariant
- Kähler-Einstein metrics with positive scalar curvature
- On the structure of spaces with Ricci curvature bounded below. I
- The complex Monge-Ampère equation
- Uniqueness of Kähler-Ricci solitons.
- Convergence of Ricci flows with bounded scalar curvature
- Explicit Gromov-Hausdorff compactifications of moduli spaces of Kähler-Einstein Fano manifolds
- Yau-Tian-Donaldson correspondence for K-semistable Fano manifolds
- Bergman kernels for a sequence of almost Kähler-Ricci solitons
- Gromov-Hausdorff limits of Kähler manifolds and algebraic geometry. II
- Kähler-Ricci flow, Kähler-Einstein metric, and K-stability
- On the singularities of spaces with bounded Ricci curvature
- On the proper moduli spaces of smoothable Kähler-Einstein Fano varieties
- Gromov-Hausdorff limits of Kähler manifolds with Ricci curvature bounded below
- Space of Ricci flows. II. Part B: Weak compactness of the flows
- The Kähler-Ricci flow and optimal degenerations
- Reductivity of the automorphism group of K-polystable Fano varieties
- On the existence of conic Kähler-Einstein metrics
- On the Kähler-Ricci flow near a Kähler-Einstein metric
- Uniqueness of \(\mathrm{K}\)-polystable degenerations of Fano varieties
- A Brunn-Minkowski type inequality for Fano manifolds and some uniqueness theorems in Kähler geometry
- On some smooth projective two-orbit varieties with Picard number 1
- Bounds on volume growth of geodesic balls under Ricci flow
- Kähler-Einstein metrics and the Kähler-Ricci flow on log Fano varieties
- Kähler-Ricci soliton and \(H\)-functional
- Tian's partial \(C^0\)-estimate implies Hamilton-Tian's conjecture
- Perelman’s entropy and Kähler-Ricci flow on a Fano manifold
- Kähler–Ricci solitons and generalized Tian–Zhu's invariant
- Existence of Einstein Metrics on Fano Manifolds
- Singular Kähler-Einstein metrics
- Sur la Structure du Groupe d’Homéomorphismes Analytiques d’une Certaine Variété Kaehlérinne
- K-stability of Fano spherical varieties
- Convergence of Kähler-Ricci flow
- BOUNDING SCALAR CURVATURE AND DIAMETER ALONG THE KÄHLER RICCI FLOW (AFTER PERELMAN)
- On the Kähler–Ricci Flows Near the Mukai–Umemura 3-Fold
- Quasi-projectivity of the moduli space of smooth Kahler-Einstein Fano manifolds
- Convergence of the Kähler–Ricci flow on Fano manifolds
- K‐Stability and Kähler‐Einstein Metrics
- A Uniform Sobolev Inequality Under Ricci Flow
- Stability, birational transformations and the Kahler-Einstein problem
This page was built for publication: Uniformly strong convergence of Kähler-Ricci flows on a Fano manifold