A symplectic homotopy perturbation method for stochastic and interval Hamiltonian systems and its applications in structural dynamic systems
From MaRDI portal
Publication:2091390
DOI10.1007/s40314-022-02079-8OpenAlexW4307240756MaRDI QIDQ2091390
Publication date: 1 November 2022
Published in: Computational and Applied Mathematics (Search for Journal in Brave)
Full work available at URL: https://doi.org/10.1007/s40314-022-02079-8
uncertaintydynamic responsenonlinearityHamiltonian systemssymplectic algorithmhomotopy perturbation method
Applications of dynamical systems (37Nxx) Approximation methods and numerical treatment of dynamical systems (37Mxx) Numerical problems in dynamical systems (65Pxx)
Cites Work
- Low rank Runge-Kutta methods, symplecticity and stochastic Hamiltonian problems with additive noise
- Highly accurate symplectic element based on two variational principles
- Predicting stochastic characteristics of generalized eigenvalues via a novel sensitivity-based probability density evolution method
- Runge-Kutta schemes for Hamiltonian systems
- Canonical Runge-Kutta methods
- Newton-like iteration method for solving algebraic equations
- On the homotopy analysis method for nonlinear problems.
- Comparison of dynamic responses of structures with uncertain-but-bounded parameters using non-probabilistic interval analysis method and probabilistic approach.
- Meshless conservative scheme for multivariate nonlinear Hamiltonian PDEs
- Explicit pseudo-symplectic methods for stochastic Hamiltonian systems
- Structure-preserving numerical methods for the fractional Schrödinger equation
- Homotopy perturbation technique
- Explicit pseudo-symplectic methods based on generating functions for stochastic Hamiltonian systems
- Symplectic propagators for the Kepler problem with time-dependent mass
- A note on continuous-stage Runge-Kutta methods
- High-order stochastic symplectic partitioned Runge-Kutta methods for stochastic Hamiltonian systems with additive noise
- An ellipsoidal Newton's iteration method of nonlinear structural systems with uncertain-but-bounded parameters
- Energy and quadratic invariants preserving (EQUIP) multi-symplectic methods for Hamiltonian wave equations
- A radial basis function artificial neural network (RBF ANN) based method for uncertain distributed force reconstruction considering signal noises and material dispersion
- High order symplectic integrators based on continuous-stage Runge-Kutta-Nyström methods
- A meshless symplectic method for two-dimensional nonlinear Schrödinger equations based on radial basis function approximation
- Arbitrary high-order EQUIP methods for stochastic canonical Hamiltonian systems
- Symplectic exponential Runge-Kutta methods for solving nonlinear Hamiltonian systems
- Discrete mechanics and variational integrators
- Symplectic Geometric Algorithms for Hamiltonian Systems
- Beyond Perturbation
- Symplectic Integration of Hamiltonian Systems with Additive Noise
- Symplectic Partitioned Runge–Kutta Methods for Constrained Hamiltonian Systems
- Geometric Numerical Integration
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
This page was built for publication: A symplectic homotopy perturbation method for stochastic and interval Hamiltonian systems and its applications in structural dynamic systems