The Cauchy-Szegö kernel for the Hardy space of 0-regular functions on the quaternionic Siegel upper half space
From MaRDI portal
Publication:2091408
DOI10.1007/s13324-022-00720-7zbMath1504.30070OpenAlexW4307254889MaRDI QIDQ2091408
Publication date: 1 November 2022
Published in: Analysis and Mathematical Physics (Search for Journal in Brave)
Full work available at URL: https://doi.org/10.1007/s13324-022-00720-7
Cites Work
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- On conformal qc geometry, spherical qc manifolds and convex cocompact subgroups of \(\mathrm{Sp}{(n+1,1)}\)
- On the Cauchy-Szegő kernel for quaternion Siegel upper half-space
- Pluripotential theory on quaternionic manifolds
- The Cauchy-Szegő projection for domains in \(\mathbb{C}^n\) with minimal smoothness
- On the optimal control method in quaternionic analysis
- Quaternion \(H\)-type group and differential operator \(\Delta_\lambda \)
- Quaternionic complexes
- Clifford wavelets, singular integrals, and Hardy spaces
- Admissible convergence for the Poisson-Szegö integrals
- The \(k\)-Cauchy-Fueter complex, Penrose transformation and hartogs phenomenon for quaternionic \(k\)-regular functions
- On the quaternionic Monge-Ampère operator, closed positive currents and Lelong-Jensen type formula on the quaternionic space
- A frame theory of Hardy spaces with the quaternionic and the Clifford algebra settings
- Quaternionic Kähler detour complexes and \({\mathcal{N} = 2}\) supersymmetric black holes
- Adaptive Fourier decomposition of functions in quaternionic Hardy spaces
- Commutators of Cauchy-Szego type integrals for domains in C^n with minimal smoothness
- Hardy Spaces on Homogeneous Groups. (MN-28), Volume 28
- An explicit formula of Cauchy-Szego kernel for quaternionic Siegel upper half space and applications
This page was built for publication: The Cauchy-Szegö kernel for the Hardy space of 0-regular functions on the quaternionic Siegel upper half space