On the generalized Ramanujan-Nagell equation \(x^2 + b^m = c^n\) with \(a^2 + b^r = c^2\)
From MaRDI portal
Publication:2092318
DOI10.55937/sut/1654320039OpenAlexW4285608892MaRDI QIDQ2092318
Nobuhiro Terai, Yudai Suenaga, Saya Nakashiki
Publication date: 2 November 2022
Published in: SUT Journal of Mathematics (Search for Journal in Brave)
Full work available at URL: https://doi.org/10.55937/sut/1654320039
Related Items
Uses Software
Cites Work
- Unnamed Item
- Unnamed Item
- Unnamed Item
- The diophantine equation \(x^ 2 + 2^ k = y^ n\)
- A note on Terai's conjecture concerning Pythagorean numbers
- On Cohn's conjecture concerning the Diophantine equation \(x^2+2^m=y^n\)
- A new conjecture concerning the Diophantine equation \(x^2+b^y=c^z\).
- On the equation \(x^2 + 2^a \cdot 3^b = y^n\)
- On the Diophantine equation \(x^2+b^m=c^n\) with \(a^2+b^4=c^2\)
- On the generalized Ramanujan-Nagell equation \(x^2+(2c-1)^m=c^n\)
- A note on the Diophantine equation \(x^2 + q^m = c^{2n}\)
- On Terai's conjecture concerning Pythagorean numbers
- Sums of two $S$-units via Frey-Hellegouarch curves
- A note on the diophantine equation x 2 + b y = c z
- ON THE DIOPHANTINE EQUATION x2 + 2a · 5b = yn
- On the diophantine equation $x^2 + b^y = c^z$
- A NOTE ON THE DIOPHANTINE EQUATION
- The Diophantine equation $x^2 + q^m =p^n$
- A note on the diophantine equation $x² + b^y = c^z$
- A NOTE ON THE DIOPHANTINE EQUATION
- On Terai's conjecture