Taylor series for resolvents of operators on graphs with small edges
From MaRDI portal
Publication:2095485
DOI10.1134/S008154382203004XzbMath1505.35343OpenAlexW4312825899MaRDI QIDQ2095485
L. I. Gazizova, Denis I. Borisov
Publication date: 17 November 2022
Published in: Proceedings of the Steklov Institute of Mathematics (Search for Journal in Brave)
Full work available at URL: https://doi.org/10.1134/s008154382203004x
Boundary value problems for second-order elliptic equations (35J25) Series solutions to PDEs (35C10) Linear boundary value problems for ordinary differential equations (34B05) PDEs on graphs and networks (ramified or polygonal spaces) (35R02)
Related Items (1)
Cites Work
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Asymptotic theory of elliptic boundary value problems in singularly perturbed domains. Vol. II. Transl. from the German by Boris Plamenevskii
- On discrete spectrum of a model graph with loop and small edges
- Analyticity of resolvents of elliptic operators on quantum graphs with small edges
- Spectral shift via ``lateral perturbation
- On a model graph with a loop and small edges. Holomorphy property of resolvent
- Limits of quantum graph operators with shrinking edges
- Perturbation of threshold of the essential spectrum of the Schrödinger operator on the simplest graph with a small edge
- Scale invariant effective Hamiltonians for a graph with a small compact core
- Approximation of a general singular vertex coupling in quantum graphs
- Homogenization of elasticity problems on singular structures
This page was built for publication: Taylor series for resolvents of operators on graphs with small edges