On the geometry of hypersurfaces in \({\mathbb{S}}^2 \times{\mathbb{S}}^2 \)
From MaRDI portal
Publication:2095508
DOI10.1007/s00025-022-01787-1zbMath1505.53076OpenAlexW4309195766MaRDI QIDQ2095508
Xiaozhen Wang, Xiaoge Lu, Peng Wang
Publication date: 17 November 2022
Published in: Results in Mathematics (Search for Journal in Brave)
Full work available at URL: https://doi.org/10.1007/s00025-022-01787-1
Differential geometry of immersions (minimal, prescribed curvature, tight, etc.) (53C42) Local submanifolds (53B25)
Related Items (1)
Cites Work
- Isoparametric foliation and Yau conjecture on the first eigenvalue
- Constant angle surfaces in product spaces
- A Hopf differential for constant mean curvature surfaces in \(\mathbb S^2 \times \mathbb R\) and \(\mathbb H^2 \times\mathbb R\)
- Isoparametrische Hyperflächen in Sphären. I
- Real hypersurfaces in a complex projective space with constant principal curvatures
- A fundamental theorem for submanifolds of multiproducts of real space forms
- Minimal hypersurfaces in the product of two spheres with index one
- On hypersurfaces of \(\mathbb{S}^2 \times \mathbb{S}^2\)
- Minimal surfaces in \(\mathbb{S}^{2} \times \mathbb{S}^{2}\)
- On the moduli space of isometric surfaces with the same mean curvature in 4-dimensional space forms
- Minimal Lagrangian surfaces in \(\mathbb S^2 \times \mathbb S^2\)
- Fundamental theorems of Lagrangian surfaces in \(S^{2}\times S^{2}\)
- Sur des familles remarquables d'hypersurfaces isoparametriques dans les espaces spheriques
- Surfaces with parallel mean curvature vector in $\mathbb{S}^{2}×\mathbb{S}^{2}$ and $\mathbb{H}^{2}×\mathbb{H}^{2}$
- Real Hypersurfaces and Complex Submanifolds in Complex Projective Space
This page was built for publication: On the geometry of hypersurfaces in \({\mathbb{S}}^2 \times{\mathbb{S}}^2 \)