Éz fields
From MaRDI portal
Publication:2097262
DOI10.1016/j.jalgebra.2022.09.028OpenAlexW4306743102MaRDI QIDQ2097262
Publication date: 11 November 2022
Published in: Journal of Algebra (Search for Journal in Brave)
Full work available at URL: https://arxiv.org/abs/2103.06919
Related Items (1)
Cites Work
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Pseudo real closed fields, pseudo \(p\)-adically closed fields and \(\mathrm{NTP}_{2}\)
- Algebraic geometry II
- Henselian implies large
- Dimension of definable sets, algebraic boundedness and Henselian fields
- Subfields of ample fields. Rational maps and definability
- Formally \(p\)-adic fields
- Seminaire de géométrie algébrique du Bois-Marie 1965-66 SGA 5 dirige par A. Grothendieck avec la collaboration de I. Bucur, C. Houzel, L. Illusie, J.-P. Jouanolou et J. -P. Serre. Cohomologie \(\ell\)-adique et fonctions L
- Supersimple fields and division rings
- Perfect pseudo-algebraically closed fields are algebraically bounded.
- Embedding problems over large fields
- Existentially generated subfields of large fields
- \(\Theta\)-Hilbertianity
- Éléments de géométrie algébrique. IV: Étude locale des schémas et des morphismes de schémas. (Séconde partie)
- Éléments de géométrie algébrique. IV: Étude locale des schémas et des morphismes de schémas (Quatrième partie). Rédigé avec la colloboration de J. Dieudonné
- Rational Points on Varieties
- Schlanke Körper (Slim fields)
- Indécidabilité de la théorie des anneaux de séries formelles à plusieurs indéterminées
- Idéaux et types sur les corps séparablement clos
- Model-complete theories of pseudo-algebraically closed fields
- Néron Models
- On definable subsets of p-adic fields
- Definability and definable groups in simple theories
- Algebraic dimension over Frobenius fields
- Amalgamation of types in pseudo-algebraically closed fields and applications
- On $ω_1$-categorical theories of fields
- Valued Fields
This page was built for publication: Éz fields