Hölder continuity of the Lyapunov exponents of linear cocycles over hyperbolic maps
From MaRDI portal
Publication:2098218
DOI10.1007/s00209-022-03147-9OpenAlexW3205605186WikidataQ115609032 ScholiaQ115609032MaRDI QIDQ2098218
Mauricio Poletti, Silvius Klein, Pedro Duarte
Publication date: 17 November 2022
Published in: Mathematische Zeitschrift (Search for Journal in Brave)
Full work available at URL: https://arxiv.org/abs/2110.10265
Large deviations (60F10) Dynamical systems and their relations with probability theory and stochastic processes (37A50) Nonuniformly hyperbolic systems (Lyapunov exponents, Pesin theory, etc.) (37D25)
Related Items (4)
Differentiability of the largest Lyapunov exponent for planar open billiards ⋮ Construction and applications of proximal maps for typical cocycles ⋮ The continuity problem of Lyapunov exponents ⋮ An invitation to \(SL_2(\mathbb{R})\) cocycles over random dynamics
Cites Work
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unique ergodicity for non-uniqueli ergodic horocycle flows
- Equivalent conditions for hyperbolic coordinates
- Théorèmes limite pour les systèmes linéaires a coefficient markoviens. (Limit theorems for linear systems with Markovian coefficients)
- Gibbs states and equilibrium states for finitely presented dynamical systems
- Généricité d'exposants de Lyapunov non-nuls pour des produits déterministes de matrices. (Genericity of non-zero Lyapunov exponents for deterministic products of matrices)
- Approximating Lyapunov exponents and stationary measures
- Continuity of Lyapunov exponents for cocycles with invariant holonomies
- Régularité du plus grand exposant caractéristique des produits de matrices aléatoires indépendantes et applications. (Regularity of the largest characteristic exponent of products of independent random matrices and applications)
- Positive Lyapunov exponents for a class of deterministic potentials
- Transfer operators and limit laws for typical cocycles
- Large deviations for products of random two dimensional matrices
- Large deviations of the Lyapunov exponent and localization for the 1D Anderson model
- Lyapunov exponents of linear cocycles. Continuity via large deviations
- Almost all cocycles over any hyperbolic system have nonvanishing Lyapunov exponents
- Simplicity of Lyapunov spectra: a sufficient criterion
- Théorie ergodique pour des classes d'opérations non completement continues
- Foundations of Ergodic Theory
- Sur un critère de récurrence en dimension 2 pour les marches stationnaires, applications
- Limit theorems for partially hyperbolic systems
- Quantitative Pesin theory for Anosov diffeomorphisms and flows
- Schrödinger operators with dynamically defined potentials
- Green's Function Estimates for Lattice Schrodinger Operators and Applications. (AM-158)
- Moduli of continuity for the Lyapunov exponents of random 𝐺𝐿(2)-cocycles
- Lyapunov exponents of linear cocycles over Markov shifts
- Lyapunov exponents with multiplicity 1 for deterministic products of matrices
- SCALES OF BANACH SPACES
- Noncommuting Random Products
- Equilibrium states and the ergodic theory of Anosov diffeomorphisms
- On nonperturbative localization with quasi-periodic potential.
- Anderson localization for Schrödinger operators on \(\mathbb{Z}\) with strongly mixing potentials.
This page was built for publication: Hölder continuity of the Lyapunov exponents of linear cocycles over hyperbolic maps