Galois cohomology for Lubin-Tate \((\varphi_q,\Gamma_{LT})\)-modules over coefficient rings
From MaRDI portal
Publication:2100590
DOI10.1007/s40993-022-00405-xOpenAlexW2969112417MaRDI QIDQ2100590
Chandrakant Aribam, Neha Kwatra
Publication date: 24 November 2022
Published in: Research in Number Theory (Search for Journal in Brave)
Full work available at URL: https://arxiv.org/abs/1908.03941
Galois cohomology (11S25) (p)-adic theory, local fields (11F85) Galois representations (11F80) (p)-adic cohomology, crystalline cohomology (14F30) Class field theory; (p)-adic formal groups (11S31)
Related Items (1)
Cites Work
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Multivariable \((\varphi ,\Gamma)\)-modules and locally analytic vectors
- An explicit formula for the Hilbert symbol of a formal group
- Galois representations and Lubin-Tate groups
- An introduction to homological algebra
- Relations between \(K_2\) and Galois cohomology
- Galois Cohomology
- Iwasawa theory and \(F\)-analytic Lubin-Tate \((\varphi,\Gamma)\)-modules
- Multivariable Lubin-Tate (\(\varphi, \Gamma\))-modules and filtered \(\varphi-\)modules
- Triangulable \(\mathcal O_F\)-analytic \((\varphi_q,\Gamma)\)-modules of rank 2
- Les foncteurs dérivés de lim et leurs applications en théorie des modules
- Galois Representations and (Phi, Gamma)-Modules
- Le corps des normes de certaines extensions infinies de corps locaux; applications
- Théorie d’Iwasawa des représentations 𝑝-adiques d’un corps local
- Sur la cohomologie galoisienne des corps $p$-adiques
- ESPACES DE BANACH DE DIMENSION FINIE
- Rigid Character Groups, Lubin-Tate Theory, and (𝜑,Γ)-Modules
- Coates–Wiles Homomorphisms and Iwasawa Cohomology for Lubin–Tate Extensions
- COHOMOLOGY AND OVERCONVERGENCE FOR REPRESENTATIONS OF POWERS OF GALOIS GROUPS
- \(\Phi\)-\(\Gamma\)-modules for families of Galois representations
This page was built for publication: Galois cohomology for Lubin-Tate \((\varphi_q,\Gamma_{LT})\)-modules over coefficient rings