A method for the construction of exact solutions to the nonlinear heat equation \(u_t = (F(U)U_x)_X + G(U)U_{x} + H(U)\)
From MaRDI portal
Publication:2100681
DOI10.1007/S11253-020-01739-4zbMath1503.35054OpenAlexW3027091984MaRDI QIDQ2100681
Ivan I. Yuryk, Tatjana A. Barannyk, Anatoliy F. Barannyk
Publication date: 24 November 2022
Published in: Ukrainian Mathematical Journal (Search for Journal in Brave)
Full work available at URL: https://doi.org/10.1007/s11253-020-01739-4
Related Items (1)
Cites Work
- Generalized separation of variables for nonlinear equation \(u_{tt} = F(u)u_{xx} + aF'(u)u_x^2\)
- Separation of variables for nonlinear equations of hyperbolic and Korteweg-de Vries type
- Solitary wave and other solutions for nonlinear heat equations
- On invariant solutions of the equation of non-linear heat conduction with a source
- Positivity versus localization in degenerate diffusion equations
- О Некоторых свойствах обобщенных решений квазилинейных вырождающихся параболических уравнений
- Invariant subspaces and new explicit solutions to evolution equations with quadratic nonlinearities
- CRC Handbook of Lie Group Analysis of Differential Equations, Volume I
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
This page was built for publication: A method for the construction of exact solutions to the nonlinear heat equation \(u_t = (F(U)U_x)_X + G(U)U_{x} + H(U)\)