Multiple point criticality principle and Coleman-Weinberg inflation
From MaRDI portal
Publication:2100990
DOI10.1007/JHEP06(2022)107WikidataQ114233425 ScholiaQ114233425MaRDI QIDQ2100990
Antonio Racioppi, Jürgen Rajasalu, Kaspar Selke
Publication date: 25 November 2022
Published in: Journal of High Energy Physics (Search for Journal in Brave)
Full work available at URL: https://arxiv.org/abs/2109.03238
Related Items (3)
Implications of Palatini gravity for inflation and beyond ⋮ Slow-roll inflation in Palatini \(F(R)\) gravity ⋮ Multiple point criticality principle and Coleman-Weinberg inflation
Cites Work
- Agravity
- Frame-covariant formulation of inflation in scalar-curvature theories
- Super-heavy dark matter -- Towards predictive scenarios from inflation
- Non-minimally coupled quartic inflation with Coleman-Weinberg one-loop corrections in the Palatini formulation
- Non-minimal two-loop inflation
- Linear inflation from quartic potential
- The 1-loop effective potential for the standard model in curved spacetime
- Inflation in gauge theory of gravity with local scaling symmetry and quantum induced symmetry breaking
- Natural inflation with hidden scale invariance
- Non-minimal (self-)running inflation: metric vs. Palatini formulation
- Multiple point criticality principle and Coleman-Weinberg inflation
- Dark matter and standard model reheating from conformal GUT inflation
- Editorial. J. J. (Hans) Duistermaat (1942--2010)
- Principle of multiple point criticality in multi-scalar dark matter models
- Renormalization group independence of cosmological attractors
- A new type of isotropic cosmological models without singularity
- Invariant quantities in the multiscalar-tensor theories of gravitation
- Invariant slow-roll parameters in scalar–tensor theories
- Transformation properties and general relativity regime in scalar–tensor theories
- THE PHASE-SPACE VIEW OF INFLATION I: THE NON-MINIMALLY COUPLED SCALAR FIELD
- The conformal frame freedom in theories of gravitation
- On the renormalization group perspective of α-attractors
- Higgs inflation with loop corrections in the Palatini formulation
- Resurrecting Quadratic Inflation with a non-minimal coupling to gravity
- Coleman-Weinberg linear inflation: metric vs. Palatini formulation
- On the robustness of the primordial power spectrum in renormalized Higgs inflation
- Quantum corrections to quartic inflation with a non-minimal coupling: metric vs. Palatini
- Higgs inflation at the hilltop
- Attractor behaviour in multifield inflation
- Palatini inflation in models with an R2 term
- Constant-roll (quasi-)linear inflation
- Inflationary predictions of double-well, Coleman-Weinberg, and hilltop potentials with non-minimal coupling
- Scalar-tensor linear inflation
- Axion dark matter from Higgs inflation with an intermediate H*
- Gravitational dark matter production in Palatini preheating
- Does Palatini Higgs inflation conserve unitarity?
- Higgs inflation in Einstein-Cartan gravity
- Inflation and Reheating in f(R,h) theory formulated in the Palatini formalism
- Tachyonic preheating in Palatini R 2 inflation
- Dynamically induced Planck scale and inflation in the Palatini formulation
- β-function reconstruction of Palatini inflationary attractors
- Inflation with R (αβ) terms in the Palatini formulation
- Quantum effects in Palatini Higgs inflation
- Quadratic, Higgs and hilltop potentials in Palatini gravity
- Quantum equivalence of f (R) gravity and scalar–tensor theories in the Jordan and Einstein frames
- Cosmological perturbations in the Palatini formulation of modified gravity
- Local transformations of units in scalar–tensor cosmology
- Inflationary universe: A possible solution to the horizon and flatness problems
- Nonminimal Coleman-Weinberg inflation with an R2 term
- Inflation with R2 term in the Palatini formulation
- Rescuing quartic and natural inflation in the Palatini formalism
- Hidden inflaton dark matter
- Preheating in Palatini Higgs inflation
- Towards distinguishing variants of non-minimal inflation
- Quantum Fields in Curved Space
This page was built for publication: Multiple point criticality principle and Coleman-Weinberg inflation