\(\mathcal{H}\)-harmonic Bergman projection on the real hyperbolic ball
From MaRDI portal
Publication:2102089
DOI10.1016/j.jmaa.2022.126802zbMath1504.31018arXiv2207.13140OpenAlexW4307208860WikidataQ115570155 ScholiaQ115570155MaRDI QIDQ2102089
Publication date: 28 November 2022
Published in: Journal of Mathematical Analysis and Applications (Search for Journal in Brave)
Full work available at URL: https://arxiv.org/abs/2207.13140
hyperbolic Laplacianhyperbolic ball\(\mathcal{H}\)-harmonic Bergman space\(\mathcal{H}\)-harmonic functions
Linear operators on function spaces (general) (47B38) Harmonic, subharmonic, superharmonic functions on other spaces (31C05)
Related Items
Uses Software
Cites Work
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Sharp Forelli-Rudin estimates and the norm of the Bergman projection
- Reproducing kernels for harmonic Bergman spaces of the unit ball
- Invariant mean-value property and \(\mathcal M\)-harmonicity in the unit ball of \(\mathbb{R}^n\)
- Harmonic Bergman functions on the unit ball in \(\mathbb R^n\)
- Calculation and estimation of the Poisson kernel
- Harmonic functions on real hyperbolic spaces
- Harmonic Function Theory
- Harmonic and Subharmonic Function Theory on the Hyperbolic Ball
- Harmonic Besov spaces on the ball
- Harmonic functions on the real hyperbolic ball II Hardy-Sobolev and Lipschitz spaces
- Harmonic functions on the real hyperbolic ball I: Boundary values and atomic decomposition of Hardy spaces
- The reproducing kernel of $\mathcal H^2$ and radial eigenfunctions of the hyperbolic Laplacian
- Spaces of Holomorphic Functions in the Unit Ball
- Duality on vector-valued weighted harmonic Bergman spaces
- Series expansion and reproducing kernels for hyperharmonic functions
- \(M\)-harmonic reproducing kernels on the ball
This page was built for publication: \(\mathcal{H}\)-harmonic Bergman projection on the real hyperbolic ball