On a conjecture of Franušić and Jadrijević: counter-examples
From MaRDI portal
Publication:2102743
DOI10.1007/s00025-022-01794-2OpenAlexW4309388044WikidataQ123255154 ScholiaQ123255154MaRDI QIDQ2102743
Shubham Gupta, Azizul Hoque, Kalyan Chakraborty
Publication date: 29 November 2022
Published in: Results in Mathematics (Search for Journal in Brave)
Full work available at URL: https://arxiv.org/abs/2211.05010
Related Items (1)
Cites Work
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- On Diophantine quintuples and \(D(-1)\)-quadruples
- Diophantine quadruples in \(\mathbb {Z}[\sqrt {4k+3}\)]
- On the \(D(- 1)\)-triple \(\{ 1,k^{2}+1,k^{2}+2k+2\}\) and its unique \(D(1)\)-extension
- Non-existence of certain Diophantine quadruples in rings of integers of pure cubic fields
- Diophantine triples with the property \(D(n)\) for distinct \(n\)'s
- On differences of two squares in some quadratic fields
- A diophantine problem in ℤ[1 + \documentclass{aastex} \usepackage{amsbsy} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{bm} \usepackage{mathrsfs} \usepackage{pifont} \usepackage{stmaryrd} \usepackage{textcomp} \usepackage{upgreek} \usepackage{portland,xspace} \usepackage{amsmath,amsxtra} \usepackage{bbm} \pagestyle{empty} \DeclareMathSizes{10}{9}{7}{6} \begin{document} \(\sqrt d\) \end{document})/2]
- Sets in Which xy + k is Always a Square
- Generalization of a problem of Diophantus
- There are only finitely many Diophantine quintuples
- There is no Diophantine quintuple
- D(n)-quadruples in the ring of integers of ℚ(√2, √3)
- THE EQUATIONS 3x2−2 = y2 AND 8x2−7 = z2
- There is no Diophantine D(−1)$D(-1)$‐quadruple
This page was built for publication: On a conjecture of Franušić and Jadrijević: counter-examples