An evaluation of methods to handle missing data in the context of latent variable interaction analysis: multiple imputation, maximum likelihood, and random forest algorithm
From MaRDI portal
Publication:2103281
DOI10.1007/s42081-022-00176-wzbMath1499.62062OpenAlexW4292790927WikidataQ114217297 ScholiaQ114217297MaRDI QIDQ2103281
Tacksoo Shin, Jeffrey D. Long, Mark L. Davison
Publication date: 13 December 2022
Published in: Japanese Journal of Statistics and Data Science (Search for Journal in Brave)
Full work available at URL: https://doi.org/10.1007/s42081-022-00176-w
maximum likelihood estimationmissing datamultiple imputationrandom forest algorithmlatent interaction model
Uses Software
Cites Work
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Bagging predictors
- Random survival forests
- Alternating imputation posterior estimation of models with crossed random effects
- The nature of sensitivity in monotone missing not at random models
- Estimation for the multiple factor model when data are missing
- Likelihood-based inference with singular information matrix
- Maximum likelihood estimation for incomplete multinomial data via the weaver algorithm
- Recursive partitioning for missing data imputation in the presence of interaction effects
- Maximum likelihood estimation of latent interaction effects with the LMS method
- Multiple Imputation After 18+ Years
- Maximum Likelihood Estimates for a Multivariate Normal Distribution when some Observations are Missing
- Fully conditional specification in multivariate imputation
- Multiple Imputation Methods for Treatment Noncompliance and Nonresponse in Randomized Clinical Trials
- Moments and Distributions of Estimates of Population Parameters from Fragmentary Samples
- Estimation for Polynomial Structural Equation Models
- Generating missing values for simulation purposes: a multivariate amputation procedure
- Random forest missing data algorithms
- Missing data techniques for multilevel data: implications of model misspecification
- Multiple imputation: current perspectives
- Random forests