Vertex algebraic construction of modules for twisted affine Lie algebras of type \(A_{2l}^{(2)}\)
From MaRDI portal
Publication:2104895
DOI10.1016/J.JPAA.2022.107263OpenAlexW4309567562MaRDI QIDQ2104895
Publication date: 8 December 2022
Published in: Journal of Pure and Applied Algebra (Search for Journal in Brave)
Full work available at URL: https://arxiv.org/abs/2205.05271
affine Lie algebravertex algebraprincipal subspacestandard modulefermionic character formulaparafermionic space
Combinatorial identities, bijective combinatorics (05A19) Kac-Moody (super)algebras; extended affine Lie algebras; toroidal Lie algebras (17B67) Vertex operators; vertex operator algebras and related structures (17B69)
Related Items (2)
Principal subspaces of basic modules for twisted affine Lie algebras, \(q\)-series multisums, and Nandi's identities ⋮ Combinatorial bases of standard modules of twisted affine Lie algebras in types and : rectangular highest weights
Cites Work
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Vertex algebraic structure of principal subspaces of basic \(A_{2n}^{(2)}\)-modules
- The structure of standard modules. I: Universal algebras and the Rogers- Ramanujan identities
- Construction of the affine Lie algebra \(A^{(1)}_1\)
- Vertex operator construction of standard modules for \(A_ n^{(1)}\)
- The physics superselection principle in vertex operator algebra theory
- Combinatorial bases of principal subspaces of modules for twisted affine Lie algebras of type \(A_{2l-1}^{(2)}\), \(D_l^{(2)}\), \(E_6^{(2)}\) and \(D_4^{(3)}\)
- Functional models of the representations of current algebras and semi-infinite Schubert cells
- The algebraic structure of relative twisted vertex operators
- Combinatorial constructions of modules for infinite-dimensional Lie algebras. I: Principal subspace
- Parafermionic bases of standard modules for affine Lie algebras
- Principal subspaces for the affine Lie algebras in types \(D, E\) and \(F\)
- CHARACTERS IN CONFORMAL FIELD THEORIES FROM THERMODYNAMIC BETHE ANSATZ
- ON ABELIAN COSET GENERALIZED VERTEX ALGEBRAS
- Vertex-algebraic structure of principal subspaces of standard $A^{(2)}_2$-modules, I
- Calculus of twisted vertex operators
- A note on principal subspaces of the affine Lie algebras in types Bl(1),Cl(1),F4(1) and G2(1)
- Parafermionic bases of standard modules for twisted affine Lie algebras of type \(A_{2l-1}^{(2)}\), \(D_{L+1}^{(2)}\), \(E_6^{(2)}\) and \(D_4^{(3)}\)
This page was built for publication: Vertex algebraic construction of modules for twisted affine Lie algebras of type \(A_{2l}^{(2)}\)