Fractional operators from vanishing Morrey to vanishing Campanato spaces in the variable exponent setting on quasi-metric measure spaces
From MaRDI portal
Publication:2106452
DOI10.1007/978-3-031-06170-7_16OpenAlexW4312318767MaRDI QIDQ2106452
Humberto Rafeiro, Stefan G. Samko
Publication date: 14 December 2022
Full work available at URL: https://doi.org/10.1007/978-3-031-06170-7_16
Integral operators (47G10) Sobolev (and similar kinds of) spaces of functions on metric spaces; analysis on metric spaces (46E36)
Related Items
Dual spaces of anisotropic variable Hardy-Lorentz spaces and their applications ⋮ Fractional operators from vanishing Morrey to vanishing Campanato spaces in the variable exponent setting on quasi-metric measure spaces ⋮ Anisotropic variable Campanato-type spaces and their Carleson measure characterizations
Cites Work
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Maximal, potential and singular operators in vanishing generalized Morrey spaces
- Variable Lebesgue spaces. Foundations and harmonic analysis
- Integral operators in non-standard function spaces. Volume 1: Variable exponent Lebesgue and amalgam spaces
- Integral operators in non-standard function spaces. Volume 2: Variable exponent Hölder, Morrey-Campanato and Grand spaces
- Variable exponent Campanato spaces
- Lebesgue and Sobolev spaces with variable exponents
- Lipschitz functions on spaces of homogeneous type
- A note on Riesz potentials
- Variable exponent fractional integrals in the limiting case \(\alpha (x)p(n) \equiv n\) on quasimetric measure spaces
- Fractional operators from vanishing Morrey to vanishing Campanato spaces in the variable exponent setting on quasi-metric measure spaces
- A note on vanishing Morrey \(\rightarrow\) VMO result for fractional integrals of variable order
- On singular operators in vanishing generalized variable-exponent Morrey spaces and applications to Bergman-type spaces
- BMO-VMO results for fractional integrals in variable exponent Morrey spaces
- A note on Riesz fractional integrals in the limiting case \(\alpha(x)p(x) \equiv n\)
- Remark to the paper of S. Samko ``A note on Riesz fractional integrals in the limiting case \(\alpha(x)p(x) \equiv n\)
- Commutators of fractional integral operators on Vanishing-Morrey spaces
- Morrey-Campanato Spaces: an Overview
- On the Riesz potential operator of variable order from variable exponent Morrey space to variable exponent Campanato space
- Grand Lebesgue space for p = ∞ and its application to Sobolev–Adams embedding theorems in borderline cases