Almost everywhere balanced sequences of complexity \(2n + 1\)
From MaRDI portal
Publication:2107735
DOI10.2140/moscow.2022.11.287OpenAlexW3133431714MaRDI QIDQ2107735
Julien Cassaigne, Julien Leroy, Sébastien Labbé
Publication date: 2 December 2022
Published in: Moscow Journal of Combinatorics and Number Theory (Search for Journal in Brave)
Full work available at URL: https://arxiv.org/abs/2102.10093
Combinatorics on words (68R15) Continued fractions and generalizations (11J70) Random dynamical systems aspects of multiplicative ergodic theory, Lyapunov exponents (37H15) Symbolic dynamics (37B10)
Related Items
Cites Work
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Factor complexity of \(S\)-adic words generated by the Arnoux-Rauzy-Poincaré algorithm
- The quality of the diophantine approximations found by the Jacobi--Perron algorithm and related algorithms
- Characterization of the moment space corresponding to the Levermore basis
- Multidimensional continued fractions and a Minkowski function
- Systèmes de numération et fonctions fractales relatifs aux substitutions. (Numeration systems and fractal functions related to substitutions)
- Diophantine approximation
- A convergence exponent for multidimensional continued-fraction algorithms
- A set of sequences of complexity \(2n+1\)
- The three-dimensional Poincaré continued fraction algorithm
- Acyclic, connected and tree sets
- Balancedness of Arnoux-Rauzy and Brun Words
- Topological properties of Rauzy fractals
- On some symmetric multidimensional continued fraction algorithms
- Some Monoids of Pisot Matrices
- Nombres algébriques et substitutions
- Représentation géométrique de suites de complexité $2n+1$
- Deviation for interval exchange transformations
- On almost everywhere strong convergence of multi-dimensional continued fraction algorithms
- Thed-Dimensional Gauss Transformation: Strong Convergence and Lyapunov Exponents
- The Three-Dimensional Gauss Algorithm Is Strongly Convergent Almost Everywhere
- The Rauzy Gasket
- -adic characterization of minimal ternary dendric shifts
- On the second Lyapunov exponent of some multidimensional continued fraction algorithms
- An $S$-adic characterization of minimal subshifts with first difference of complexity $1 \leq p(n+1) - p(n) \leq 2$
- Beyond substitutive dynamical systems: S-adic expansions
- Factor complexity
- Substitutions, Rauzy fractals and tilings
- Sequences with minimal block growth
- Symbolic Dynamics
- Symbolic Dynamics II. Sturmian Trajectories
- Über Fareynetze in n Dimensionen