The construction of the Hilbert genus fields of real cyclic quartic fields
From MaRDI portal
Publication:2108521
DOI10.7169/facm/2014OpenAlexW3165424700MaRDI QIDQ2108521
Mohammed Taous, Moulay Ahmed Hajjami, Mohamed Mahmoud Chems-Eddin
Publication date: 19 December 2022
Published in: Functiones et Approximatio. Commentarii Mathematici (Search for Journal in Brave)
Full work available at URL: https://arxiv.org/abs/2105.11350
Cites Work
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Hilbert genus fields of biquadratic fields
- The genus fields of algebraic number fields
- Hilbert class fields of real biquadratic fields
- Sur les \(\ell\)-classes d'idéaux dans les extensions cycliques rélatives de degré premier \(\ell\). I
- Integral bases for quartic fields with quadratic subfields
- The 2-rank of the class group of some real cyclic quartic number fields
- Genus fields of real biquadratic fields
- Calculation of the Class Numbers of Imaginary Cyclic Quartic Fields
- On the Divisibility of the Class Numbers of Q(√−p) and Q(√−2p) by 16.
- The explicit Hilbert 2-cyclic class field for Q ().
- Sur le 2-groupe des classes d'idéaux des corps quadratiques.
- Quadratic Irrationals
- The2-rankof the class group of some real cyclic quartic number fields II
- On Hilbert genus fields of imaginary cyclic quartic fields
- The genus field and genus group in finite number fields
- Hilbert genus fields of real biquadratic fields
- Hilbert genus fields of real biquadratic fields
This page was built for publication: The construction of the Hilbert genus fields of real cyclic quartic fields