A global Weinstein splitting theorem for holomorphic Poisson manifolds
From MaRDI portal
Publication:2108752
DOI10.2140/gt.2022.26.2831OpenAlexW3132383681MaRDI QIDQ2108752
Jorge Vitório Pereira, Brent Pym, Frédéric Touzet, Stéphane Druel
Publication date: 20 December 2022
Published in: Geometry \& Topology (Search for Journal in Brave)
Full work available at URL: https://arxiv.org/abs/2102.12641
Poisson manifolds; Poisson groupoids and algebroids (53D17) Compact Kähler manifolds: generalizations, classification (32J27) Dynamical aspects of holomorphic foliations and vector fields (37F75)
Related Items (1)
Cites Work
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- The local structure of Poisson manifolds
- The graph of a foliation
- Variétés kähleriennes dont la première classe de Chern est nulle
- Singular foliations with trivial canonical class
- Global stability for holomorphic foliations on Kähler manifolds
- On foliations with semi-positive anti-canonical bundle
- Variétés kähleriennes et premiere classe de Chern
- A variable-metric variant of the Karmarkar algorithm for linear programming
This page was built for publication: A global Weinstein splitting theorem for holomorphic Poisson manifolds