On degenerate 3-\((\alpha, \delta)\)-Sasakian manifolds
DOI10.1515/coma-2021-0142OpenAlexW4312766567WikidataQ125973343 ScholiaQ125973343MaRDI QIDQ2108755
Leander Stecker, Oliver Goertsches, Leon Roschig
Publication date: 20 December 2022
Published in: Complex Manifolds (Search for Journal in Brave)
Full work available at URL: https://arxiv.org/abs/2206.04002
homogeneous spaceshyper-Kähler manifoldsnilpotent Lie groupsBoothby-Wang bundleSasakian geometryquaternionic Heisenberg groups
Differential geometry of homogeneous manifolds (53C30) Hyper-Kähler and quaternionic Kähler geometry, ``special geometry (53C26) Special Riemannian manifolds (Einstein, Sasakian, etc.) (53C25) Nilpotent and solvable Lie groups (22E25)
Cites Work
- Unnamed Item
- Unnamed Item
- Unnamed Item
- A class of Sasakian 5-manifolds
- On contact manifolds
- Isometry groups on homogeneous nilmanifolds
- Structure of homogeneous Riemann spaces with zero Ricci curvature
- Curvatures of left invariant metrics on Lie groups
- Complex contact manifolds and hyperkähler geometry
- Boothby-Wang fibrations on complex contact manifolds
- Homogeneous non-degenerate 3-\((\alpha,\delta)\)-Sasaki manifolds and submersions over quaternionic Kähler spaces
- Generalizations of 3-Sasakian manifolds and skew torsion
- Revisiting the classification of homogeneous 3-Sasakian and quaternionic Kähler manifolds
- Quaternionic Heisenberg groups as naturally reductive homogeneous spaces
- Lie groups beyond an introduction
This page was built for publication: On degenerate 3-\((\alpha, \delta)\)-Sasakian manifolds