Special values of \(L\)-functions on regular arithmetic schemes of dimension 1
From MaRDI portal
Publication:2109413
DOI10.1016/j.jnt.2022.07.002OpenAlexW3189284776WikidataQ114156436 ScholiaQ114156436MaRDI QIDQ2109413
Publication date: 21 December 2022
Published in: Journal of Number Theory (Search for Journal in Brave)
Full work available at URL: https://arxiv.org/abs/2108.00811
Étale and other Grothendieck topologies and (co)homologies (14F20) Zeta functions and related questions in algebraic geometry (e.g., Birch-Swinnerton-Dyer conjecture) (14G10) (L)-functions of varieties over global fields; Birch-Swinnerton-Dyer conjecture (11G40)
Related Items
Tori over number fields and special values at \(s = 1\), Special values of \(L\)-functions of one-motives over function fields
Cites Work
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Milne's correcting factor and derived de Rham cohomology
- The Weil-étale topology for number rings
- Induced representations and projective modules
- Duality in the étale cohomology of one-dimensional proper schemes and generalizations
- Determinant functors on exact categories and their extensions to categories of bounded complexes
- On topological cyclic homology
- Weil-étale cohomology and zeta-values of proper regular arithmetic schemes
- Basic number theory.
- Special values of \(L\)-functions of one-motives over function fields
- Zeta functions of regular arithmetic schemes at \(s=0\)
- Éléments de géométrie algébrique. IV: Étude locale des schémas et des morphismes de schémas (Quatrième partie). Rédigé avec la colloboration de J. Dieudonné
- Affine open subsets of algebraic varieties and ample divisors
- Determinant functors on triangulated categories
- Groupes de Picard et problèmes de Skolem. I
- Cohomology of topological groups with applications to the Weil group
- Higher algebraic K-theory: I
- The projectivity of the moduli space of stable curves. I: Preliminaries on "det" and "Div".
- Tamagawa numbers for motives with (noncommutative) coefficients, II
- Notes on étale cohomology of number fields
- DENINGER'S CONJECTURES AND WEIL-ARAKELOV COHOMOLOGY
- The analytic class number formula for 1‐dimensional affine schemes
- Higher Topos Theory (AM-170)