Subresultant chains using Bézout matrices
From MaRDI portal
Publication:2109975
DOI10.1007/978-3-031-14788-3_3OpenAlexW4300536553MaRDI QIDQ2109975
Mohammadali Asadi, Marc Moreno Maza, Alexander Brandt, David J. Jeffrey
Publication date: 21 December 2022
Full work available at URL: https://doi.org/10.1007/978-3-031-14788-3_3
Uses Software
Cites Work
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Algorithms for computing triangular decomposition of polynomial systems
- Computational schemes for subresultant chains
- Bezout matrices, subresultant polynomials and parameters
- A new approach for constructing subresultants
- Various new expressions for subresultants and their applications
- Optimizations of the subresultant algorithm
- Modern Computer Algebra
- Minors of Bezout matrices, subresultants and the parameterization of the degree of the polynomial greatest common divisor
- On the parallelization of triangular decompositions
- LU factoring of non-invertible matrices
- Sylvester's Identity and Multistep Integer-Preserving Gaussian Elimination
- Division-free computation of subresultants using Bezout matrices
This page was built for publication: Subresultant chains using Bézout matrices