On the fractional Laplacian of variable order
From MaRDI portal
Publication:2110174
DOI10.1007/s13540-021-00003-1zbMath1503.35253arXiv2109.01060OpenAlexW4210567543WikidataQ114017076 ScholiaQ114017076MaRDI QIDQ2110174
Andrea Giusti, Eric Darve, Natalia L. Rubio, Roberto Garrappa, Marta D'Elia
Publication date: 21 December 2022
Published in: Fractional Calculus \& Applied Analysis (Search for Journal in Brave)
Full work available at URL: https://arxiv.org/abs/2109.01060
Fractional derivatives and integrals (26A33) Fourier and Fourier-Stieltjes transforms and other transforms of Fourier type (42A38) Fractional partial differential equations (35R11)
Related Items
Cites Work
- Fractional integration and differentiation of variable order: an overview
- Ten equivalent definitions of the fractional Laplace operator
- Variable-order fractional calculus: a change of perspective
- Towards a unified theory of fractional and nonlocal vector calculus
- Why fractional derivatives with nonsingular kernels should not be used
- What is the fractional Laplacian? A comparative review with new results
- A review on variable-order fractional differential equations: mathematical foundations, physical models, numerical methods and applications
- The Dirichlet problem for nonlocal operators
- L'intégrale de Riemann-Liouville et le problème de Cauchy
- Lower bounded semi-Dirichlet forms associated with Lévy type operators
- A Course of Modern Analysis
- Sobolev Spaces with Non-Muckenhoupt Weights, Fractional Elliptic Operators, and Applications
- On Positivity of Fourier Transforms
- Unnamed Item
- Unnamed Item
- Unnamed Item