Asymptotics of the Mittag-Leffler function \(E_a(z)\) on the negative real axis when \(a \rightarrow 1\)
DOI10.1007/S13540-022-00031-5zbMath1503.30092OpenAlexW4224298572WikidataQ114017029 ScholiaQ114017029MaRDI QIDQ2110888
Publication date: 23 December 2022
Published in: Fractional Calculus \& Applied Analysis (Search for Journal in Brave)
Full work available at URL: https://doi.org/10.1007/s13540-022-00031-5
Integration, integrals of Cauchy type, integral representations of analytic functions in the complex plane (30E20) Mittag-Leffler functions and generalizations (33E12) Other functions defined by series and integrals (33E20) Asymptotic representations in the complex plane (30E15)
Related Items (1)
Uses Software
Cites Work
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Mittag-Leffler functions and their applications
- On Mittag-Leffler-type functions in fractional evolution processes
- The role of the Mittag-Leffler function in fractional modeling
- Uniform, Exponentially improved, Asymptotic Expansions for the Generalized Exponential Integral
- The fundamental solution of the space-time fractional diffusion equation
- Exponential asymptotics of the Mittag–Leffler function
- Uniform asymptotic smoothing of Stokes’s discontinuities
- Mittag-Leffler Functions, Related Topics and Applications
This page was built for publication: Asymptotics of the Mittag-Leffler function \(E_a(z)\) on the negative real axis when \(a \rightarrow 1\)