Anisotropic interpolation error estimates using a new geometric parameter
From MaRDI portal
Publication:2111567
DOI10.1007/s13160-022-00535-wOpenAlexW4293056413WikidataQ114220249 ScholiaQ114220249MaRDI QIDQ2111567
Kenta Kobayashi, Hiroki Ishizaka, Takuya Tsuchiya
Publication date: 17 January 2023
Published in: Japan Journal of Industrial and Applied Mathematics (Search for Journal in Brave)
Full work available at URL: https://arxiv.org/abs/2106.03339
Finite element, Rayleigh-Ritz and Galerkin methods for boundary value problems involving PDEs (65N30) Numerical interpolation (65D05)
Related Items (2)
Correction to: ``General theory of interpolation error estimates on anisotropic meshes ⋮ Anisotropic Raviart-Thomas interpolation error estimates using a new geometric parameter
Cites Work
- On semiregular families of triangulations and linear interpolation
- On the equivalence of regularity criteria for triangular and tetrahedral finite element partitions
- Anisotropic interpolation with applications to the finite element method
- Theory and practice of finite elements.
- General theory of interpolation error estimates on anisotropic meshes
- Crouzeix-Raviart and Raviart-Thomas finite-element error analysis on anisotropic meshes violating the maximum-angle condition
- Anisotropic Raviart-Thomas interpolation error estimates using a new geometric parameter
- A new geometric condition equivalent to the maximum angle condition for tetrahedrons
- Sliver exudation
- On the Maximum Angle Condition for Linear Tetrahedral Elements
- On the Angle Condition in the Finite Element Method
- Thepandh-pVersions of the Finite Element Method, Basic Principles and Properties
- Anisotropic interpolation and quasi-Wilson element for narrow quadrilateral meshes
- The Bramble--Hilbert Lemma for Convex Domains
- The Mathematical Theory of Finite Element Methods
- Unnamed Item
This page was built for publication: Anisotropic interpolation error estimates using a new geometric parameter