Diophantine triples with the property \(D(n)\) for distinct \(n\)'s
From MaRDI portal
Publication:2112035
DOI10.1007/s00009-022-02240-xOpenAlexW4311055439MaRDI QIDQ2112035
Shubham Gupta, Azizul Hoque, Kalyan Chakraborty
Publication date: 17 January 2023
Published in: Mediterranean Journal of Mathematics (Search for Journal in Brave)
Full work available at URL: https://arxiv.org/abs/2204.14208
Related Items (1)
Cites Work
- Diophantine quadruples in \(\mathbb {Z}[\sqrt {4k+3}\)]
- Triples which are \(D(n)\)-sets for several \(n\)'s
- \(D(n)\)-quintuples with square elements
- Doubly regular Diophantine quadruples
- \(D(-1)\) tuples in imaginary quadratic fields
- On a conjecture of Franušić and Jadrijević: counter-examples
- Diophantine quadruples with the properties \(D(n_1)\) and \(D(n_2)\)
- Bounds on the number of Diophantine quintuples
- A diophantine problem in ℤ[1 + \documentclass{aastex} \usepackage{amsbsy} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{bm} \usepackage{mathrsfs} \usepackage{pifont} \usepackage{stmaryrd} \usepackage{textcomp} \usepackage{upgreek} \usepackage{portland,xspace} \usepackage{amsmath,amsxtra} \usepackage{bbm} \pagestyle{empty} \DeclareMathSizes{10}{9}{7}{6} \begin{document} \(\sqrt d\) \end{document})/2]
- Generalization of a problem of Diophantus
- There are only finitely many Diophantine quintuples
- There is no Diophantine quintuple
- COMPLETE SOLUTION OF A PROBLEM OF DIOPHANTUS AND EULER
- On the size of Diophantine m-tuples in imaginary quadratic number rings
- D(n)-quadruples in the ring of integers of ℚ(√2, √3)
- THE EQUATIONS 3x2−2 = y2 AND 8x2−7 = z2
- There is no Diophantine D(−1)$D(-1)$‐quadruple
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
This page was built for publication: Diophantine triples with the property \(D(n)\) for distinct \(n\)'s