Factorization of coefficients for exponential and logarithm in function fields
From MaRDI portal
Publication:2112733
DOI10.1016/j.jnt.2022.11.001OpenAlexW3094028972WikidataQ115570073 ScholiaQ115570073MaRDI QIDQ2112733
Publication date: 11 January 2023
Published in: Journal of Number Theory (Search for Journal in Brave)
Full work available at URL: https://arxiv.org/abs/2010.12979
special valuesDrinfeld moduleslog-algebraicityHayes modules\(v\)-adic \(L\)-functionscharacteristic \(p\) \(L\)-functionsShtuka functions
Arithmetic theory of algebraic function fields (11R58) Drinfel'd modules; higher-dimensional motives, etc. (11G09) Zeta and (L)-functions in characteristic (p) (11M38)
Related Items
Cites Work
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- A counterexample to `Algebraic function fields with small class number'
- Tensor powers of the Carlitz module and zeta values
- Algebraic function fields with small class number
- Commutative subrings of certain noncommutative rings
- \(v\)-adic zeta functions, \(L\)-series and measures for function fields
- Von Staudt for \(\mathbb F_q[T\)]
- Shtukas and Jacobi sums
- Log-algebraicity of twisted \(A\)-harmonic series and special values of \(L\)-series in characteristic \(p\)
- Values of certain \(L\)-series in positive characteristic
- Special zeta values using tensor powers of Drinfeld modules
- Special \(L\)-values and shtuka functions for Drinfeld modules on elliptic curves
- Explicit Class Field Theory for Rational Function Fields
- ELLIPTIC MODULES
- On Multiple Polylogarithms in Characteristic $p$: $v$-Adic Vanishing Versus $\infty$-Adic Eulerianness
- Special functions and twisted L-series