Atkinson's formula for the mean square of \(\zeta (s)\) with an explicit error term
From MaRDI portal
Publication:2112778
DOI10.1016/j.jnt.2022.09.010OpenAlexW4306744391MaRDI QIDQ2112778
Publication date: 12 January 2023
Published in: Journal of Number Theory (Search for Journal in Brave)
Full work available at URL: https://arxiv.org/abs/2105.06821
Asymptotic results on arithmetic functions (11N37) (zeta (s)) and (L(s, chi)) (11M06) Analytic computations (11Y35)
Cites Work
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Riemann's zeta-function and the divisor problem
- Ein \(\Omega\)-Resultat für das quadratische Mittel der Riemannschen Zetafunktion auf der kritischen Linie
- Explicit \(L^2\) bounds for the Riemann \(\zeta\) function
- Explicit zero density estimate for the Riemann zeta-function near the critical line
- Error bounds for the large-argument asymptotic expansions of the Hankel and Bessel functions
- The mean-value of the Riemann zeta function
- On the Atkinson formula for the \(\zeta\) function
- The Theory of Hardy's Z-Function
- The Mean Values of the Riemann Zeta-Function on the Critical Line
- Majorations Explicites Pour le Nombre de Diviseurs de N
- An Improvement on a Theorem of Titchmarsh on the Mean Square of |ζ(12+it)|
- The mean value theorem for the Riemann zeta‐function
- THE TWELFTH POWER MOMENT OF THE RIEMANN-FUNCTION
- The Fourth Power Moment of the Riemann Zeta Function
- The mean square of the Riemann zeta-function in the critical strip III
- Decoupling for Perturbed Cones and the Mean Square of $|\zeta (\frac 12+it)|$
- ON VAN DER CORPUT'S METHOD AND THE ZETA-FUNCTION OF RIEMANN (V)
- The Lindelöf hypothesis for primes is equivalent to the Riemann hypothesis
- Explicit upper bounds for the remainder term in the divisor problem
- THE MEAN VALUE OF THE ZETA-FUNCTION ON THE CRITICAL LINE
This page was built for publication: Atkinson's formula for the mean square of \(\zeta (s)\) with an explicit error term