Degenerate principal series and nilpotent invariants
From MaRDI portal
Publication:2114134
DOI10.1007/s00209-021-02854-zzbMath1496.22006OpenAlexW3201349481MaRDI QIDQ2114134
Publication date: 15 March 2022
Published in: Mathematische Zeitschrift (Search for Journal in Brave)
Full work available at URL: https://doi.org/10.1007/s00209-021-02854-z
theta correspondenceassociated cycledegenerate principal series representationgeneralized Whittaker module
Representation theory for linear algebraic groups (20G05) Semisimple Lie groups and their representations (22E46) Representations of Lie and linear algebraic groups over real fields: analytic methods (22E45)
Related Items
Cites Work
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Remarks on real nilpotent orbits of a symmetric pair
- Orbit correspondences for real reductive dual pairs
- Degenerate principal series and invariant distributions
- Modèles de Whittaker dégénéres pour des groupes p-adiques. (Degenerate Whittaker models of p-adic groups)
- Howe correspondences on a \(p\)-adic field
- The local structure of characters
- Representations of real reductive Lie groups
- On the degree 5 \(L\)-function for \(Sp(2)\)
- Gelfand-Kirillov dimension for Harish-Chandra modules
- Degenerate principal series and local theta correspondence. II
- Characteristic cycles and wave front cycles of representations of reductive Lie groups
- Multiplicity-free actions and the geometry of nilpotent orbits
- Whittaker supports for representations of reductive groups
- Dirac index and associated cycles of Harish-Chandra modules
- Twisted homology for the mirabolic nilradical
- Local theta lifting of generalized Whittaker models associated to nilpotent orbits
- Transcending Classical Invariant Theory
- On the Singular Rank of a Representation
- Local theta correspondence and nilpotent invariants
- Invariants and -spectrums of local theta lifts
- Degenerate Whittaker functionals for real reductive groups
- Generalized and degenerate Whittaker models