On boundedness and convergence of solutions for neutral stochastic functional differential equations driven by G-Brownian motion
DOI10.1186/S13662-019-2218-XzbMath1485.60064OpenAlexW2956772113WikidataQ127465528 ScholiaQ127465528MaRDI QIDQ2114294
Publication date: 15 March 2022
Published in: Advances in Difference Equations (Search for Journal in Brave)
Full work available at URL: https://doi.org/10.1186/s13662-019-2218-x
convergenceboundednessneutral stochastic functional differential equationsG-Brownian motion\(L^2_G\) and exponential estimates
Fractional processes, including fractional Brownian motion (60G22) Stochastic ordinary differential equations (aspects of stochastic analysis) (60H10) Computational methods for stochastic equations (aspects of stochastic analysis) (60H35) Stochastic integral equations (60H20)
Related Items (2)
Cites Work
- Unnamed Item
- Unnamed Item
- Exponential stability of solutions to impulsive stochastic differential equations driven by \(G\)-Brownian motion
- Function spaces and capacity related to a sublinear expectation: application to \(G\)-Brownian motion paths
- Global stability for infinite delay Lotka--Volterra type systems
- A note on \(p\)th moment estimates for stochastic functional differential equations in the framework of G-Brownian motion
- Stochastic functional differential equations with infinite delay: existence and uniqueness of solutions, solution maps, Markov properties, and ergodicity
- Pathwise properties and homeomorphic flows for stochastic differential equations driven by \(G\)-Brownian motion
- Stochastic functional differential equations with infinite delay
- Stability of functional differential equations
- Razumikhin-type theorems on exponential stability of neutral stochastic functional differential equations
- Stabilization of stochastic differential equations driven by \(G\)-Brownian motion with feedback control based on discrete-time state observation
- Asymptotical boundedness for stochastic coupled systems on networks driven by \(G\)-Brownian motion
- Existence and stability of solutions to non-linear neutral stochastic functional differential equations in the framework of G-Brownian motion
- Mean-square stability of delayed stochastic neural networks with impulsive effects driven by \(G\)-Brownian motion
- Exponential stability of SDEs driven by \(G\)-Brownian motion with delayed impulsive effects: average impulsive interval approach
- On the exponential stability in mean square of neutral stochastic functional differential equations
- Convergence and asymptotical stability of numerical solutions for neutral stochastic delay differential equations driven by \(G\)-Brownian motion
- Stability analysis of stochastic pantograph multi-group models with dispersal driven by \(G\)-Brownian motion
- Multi-dimensional \(G\)-Brownian motion and related stochastic calculus under \(G\)-expectation
- Stochastic functional differential equations with infinite delay driven by G -Brownian motion
- Exponential stability of neutral stochastic functional differential equations driven by G-Brownian motion
- Stability of neutral stochastic functional differential equations with Markovian switching driven by G-Brownian motion
- Stabilisation of SDEs and applications to synchronisation of stochastic neural network driven by G-Brownian motion with state-feedback control
- The p-th moment stability of solutions to impulsive stochastic differential equations driven by G-Brownian motion
- Multi-valued stochastic differential equations driven byG-Brownian motion and related stochastic control problems
- Stability analysis of impulsive stochastic Cohen–Grossberg neural networks driven by G-Brownian motion
This page was built for publication: On boundedness and convergence of solutions for neutral stochastic functional differential equations driven by G-Brownian motion