New proofs for the disjunctive Rado number of the equations \(x_1-x_2=a\) and \(x_1-x_2=b\)
From MaRDI portal
Publication:2115151
DOI10.1007/S00373-021-02400-YzbMath1484.05140OpenAlexW4210291968WikidataQ113905209 ScholiaQ113905209MaRDI QIDQ2115151
Publication date: 15 March 2022
Published in: Graphs and Combinatorics (Search for Journal in Brave)
Full work available at URL: https://doi.org/10.1007/s00373-021-02400-y
Cites Work
- Unnamed Item
- Unnamed Item
- Unnamed Item
- All two-color Rado numbers for \(a(x+y)=bz\)
- Rado numbers for \(a(x+y)bz\)
- A note on disjunctive Rado numbers.
- Rado numbers for the equation \(\sum_{i=1}^{m-1} x_i + c = x_m\), for negative values of \(c\)
- The two-colour Rado number for the equation \(ax+by=(a+b)_z\)
- Determination of the two-color Rado number for \(a_{1}x_{1}+\cdots +a_m x_m=x_{0}\)
- On Rado numbers for \(\Sigma^{m-1}_{i=1} a_{i}x_{i}= x_{m}\)
- Disjunctive Rado numbers
This page was built for publication: New proofs for the disjunctive Rado number of the equations \(x_1-x_2=a\) and \(x_1-x_2=b\)