Computing the largest C-eigenvalue of a tensor using convex relaxation
From MaRDI portal
Publication:2115256
DOI10.1007/s10957-021-01983-zzbMath1484.15032OpenAlexW4210527982MaRDI QIDQ2115256
Publication date: 15 March 2022
Published in: Journal of Optimization Theory and Applications (Search for Journal in Brave)
Full work available at URL: https://doi.org/10.1007/s10957-021-01983-z
Numerical mathematical programming methods (65K05) Eigenvalues, singular values, and eigenvectors (15A18) Multilinear algebra, tensor calculus (15A69)
Related Items (4)
Localization and calculation for C-eigenvalues of a piezoelectric-type tensor ⋮ Perturbation bounds for the largest \(C\)-eigenvalue of piezoelectric-type tensors ⋮ A projection method based on discrete normalized dynamical system for computing C-eigenpairs ⋮ Shifted power method for computing the largest C-eigenvalue of a piezoelectric-type tensor
Cites Work
- Unnamed Item
- Unnamed Item
- Approximation algorithms for homogeneous polynomial optimization with quadratic constraints
- C-eigenvalue inclusion theorems for piezoelectric-type tensors
- Shifted eigenvalue decomposition method for computing C-eigenvalues of a piezoelectric-type tensor
- Eigenvalue bounds of third-order tensors via the minimax eigenvalue of symmetric matrices
- \(C\)-eigenvalues intervals for piezoelectric-type tensors
- A new C-eigenvalue interval for piezoelectric-type tensors
- Tensor principal component analysis via convex optimization
- Infinite and finite dimensional Hilbert tensors
- C-eigenvalue intervals for piezoelectric-type tensors via symmetric matrices
- Semidefinite Relaxations for Best Rank-1 Tensor Approximations
- Finding the extreme Z-eigenvalues of tensors via a sequential semidefinite programming method
- Rank-1 Tensor Properties with Applications to a Class of Tensor Optimization Problems
- A New $C$-Eigenvalue Localisation Set for Piezoelectric-Type Tensors
- Most Tensor Problems Are NP-Hard
This page was built for publication: Computing the largest C-eigenvalue of a tensor using convex relaxation