Narrow quantum \(D\)-modules and quantum Serre duality
From MaRDI portal
Publication:2115471
DOI10.5802/aif.3419zbMath1493.14097arXiv1811.01888OpenAlexW3189305451MaRDI QIDQ2115471
Publication date: 17 March 2022
Published in: Annales de l'Institut Fourier (Search for Journal in Brave)
Full work available at URL: https://arxiv.org/abs/1811.01888
Gromov-Witten invariants, quantum cohomology, Gopakumar-Vafa invariants, Donaldson-Thomas invariants (algebro-geometric aspects) (14N35) Differentials and other special sheaves; D-modules; Bernstein-Sato ideals and polynomials (14F10) Gromov-Witten invariants, quantum cohomology, Frobenius manifolds (53D45)
Related Items (1)
Cites Work
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Applications of homological mirror symmetry to hypergeometric systems: duality conjectures
- A category of kernels for equivariant factorizations and its implications for Hodge theory
- An integral structure in quantum cohomology and mirror symmetry for toric orbifolds
- Quantum Riemann-Roch, Lefschetz and Serre
- Orbifold quantum Riemann-Roch, Lefschetz and Serre
- Localization of virtual classes
- The intrinsic normal cone
- Riemann-Roch theorems for Deligne-Mumford stacks
- A new cohomology theory of orbifold
- Integral transforms and quantum correspondences
- Landau-Ginzburg/Calabi-Yau correspondence, global mirror symmetry and Orlov equivalence
- Quantum cohomology and periods
- The quantum Lefschetz hyperplane principle can fail for positive orbifold hypersurfaces
- Clifford modules
- Compactifying the space of stable maps
- A proof of the Landau-Ginzburg/Calabi-Yau correspondence via the crepant transformation conjecture
- Ruan's conjecture and integral structures in quantum cohomology
- Gromov-Witten theory of Deligne-Mumford stacks
- Local Chern classes
- Quantum Serre Theorem as a Duality Between QuantumD-Modules: Table 1.
- Equivariant Gromov - Witten Invariants
This page was built for publication: Narrow quantum \(D\)-modules and quantum Serre duality