How often is \(d(n)\) a power of a given integer?
From MaRDI portal
Publication:2116755
DOI10.1016/j.jnt.2021.07.020zbMath1489.11154OpenAlexW3197366746WikidataQ114156792 ScholiaQ114156792MaRDI QIDQ2116755
Publication date: 18 March 2022
Published in: Journal of Number Theory (Search for Journal in Brave)
Full work available at URL: https://doi.org/10.1016/j.jnt.2021.07.020
Asymptotic results on arithmetic functions (11N37) Arithmetic functions; related numbers; inversion formulas (11A25) Other results on the distribution of values or the characterization of arithmetic functions (11N64)
Cites Work
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- The number of nonzero coefficients of modular forms mod \(p\)
- A zero-density theorem for the Riemann zeta-function
- On the distribution of the coefficients of modular forms modulo 𝑝^{𝑗}
- Arithmetical Notes, V. A Divisibility Property of the Divisor Function
- Handbook of Number Theory I
- WEAK PROPER DISTRIBUTION OF VALUES OF MULTIPLICATIVE FUNCTIONS IN RESIDUE CLASSES
- On distribution of values of multiplicative functions in residue classes
- Das asymptotische Verhalten von Summen über multiplikative Funktionen. II
- A Prime-Divisor Function
- On a Congruence Property of the Divisor Function
This page was built for publication: How often is \(d(n)\) a power of a given integer?