Existence and asymptotic behavior of ground states for Choquard-Pekar equations with Hardy potential and critical reaction
DOI10.1007/s12220-022-00892-5zbMath1485.35345OpenAlexW4214902015MaRDI QIDQ2117509
Qingfang Wu, Lizhen Lai, Dongdong Qin, Xian Hua Tang
Publication date: 21 March 2022
Published in: The Journal of Geometric Analysis (Search for Journal in Brave)
Full work available at URL: https://doi.org/10.1007/s12220-022-00892-5
critical exponentground statesHardy potentialChoquard-Pekar equationBL-splitting propertylocal super-linear growth
Nonlinear elliptic equations (35J60) NLS equations (nonlinear Schrödinger equations) (35Q55) PDEs in connection with quantum mechanics (35Q40) Applications of functional analysis in quantum physics (46N50) Variational methods for second-order elliptic equations (35J20)
Related Items (3)
Cites Work
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Pointwise bounds and blow-up for Choquard-Pekar inequalities at an isolated singularity
- Nodal solutions for the Choquard equation
- Nonlinear Choquard equations involving a critical local term
- Solutions of Schrödinger equations with inverse square potential and critical nonlinearity
- Semi-classical states for the Choquard equation
- A guide to the Choquard equation
- On a periodic Schrödinger equation with nonlocal superlinear part
- Existence and asymptotic behavior of ground state solutions for Schrödinger equations with Hardy potential and Berestycki-Lions type conditions
- Ground states and geometrically distinct solutions for periodic Choquard-Pekar equations
- Classification of positive solitary solutions of the nonlinear Choquard equation
- Localised solutions of Hartree equations for narrow-band crystals
- Unique continuation for Schrödinger operators with unbounded potentials
- On a class of nonlinear Schrödinger equations
- On a nonlinear Schrödinger equation with periodic potential
- A note on the sign-changing solutions to elliptic problems with critical Sobolev and Hardy terms.
- On some periodic Hartree-type models for crystals
- Nontrivial solutions for Schrödinger equation with local super-quadratic conditions
- Solutions of Hartree-Fock equations for Coulomb systems
- On positive entire solutions to a class of equations with a singular coefficient and critical exponent
- Minimax theorems
- Saddle solutions for the critical Choquard equation
- Ground states and multiple solutions for Choquard-Pekar equations with indefinite potential and general nonlinearity
- Ground states and non-existence results for Choquard type equations with lower critical exponent and indefinite potentials
- Ground state solutions of Nehari-Pankov type for Schrödinger equations with local super-quadratic conditions
- Semiclassical solutions for Choquard equations with Berestycki-Lions type conditions
- Saddle solutions for the Choquard equation
- Ground states of nonlinear Schrödinger equations with sum of periodic and inverse-square potentials
- Small linear perturbations of fractional Choquard equations with critical exponent
- On the planar Choquard equation with indefinite potential and critical exponential growth
- Existence of a Nontrivial Solution to a Strongly Indefinite Semilinear Equation
- Quantum computation, entanglement and state reduction
- The Choquard equation and related questions
- Existence and Uniqueness of the Minimizing Solution of Choquard's Nonlinear Equation
- Strict definiteness of integrals via complete monotonicity of derivatives
- A Cauchy-Schwarz type inequality for bilinear integrals on positive measures
- The Schrödinger–Newton equation as a non-relativistic limit of self-gravitating Klein–Gordon and Dirac fields
- Multiple bound states of higher topological type for semi-classical Choquard equations
- Choquard equations with critical nonlinearities
- Nehari-type ground state solutions for Schrödinger equations with Hardy potential and critical nonlinearities
- Existence of groundstates for a class of nonlinear Choquard equations
This page was built for publication: Existence and asymptotic behavior of ground states for Choquard-Pekar equations with Hardy potential and critical reaction