Hybrid subconvexity bounds for \(L(1/2,\operatorname{sym}^2 f \otimes \chi)\)
From MaRDI portal
Publication:2117551
DOI10.1007/s11139-021-00507-7zbMath1498.11140OpenAlexW3208985340MaRDI QIDQ2117551
Publication date: 21 March 2022
Published in: The Ramanujan Journal (Search for Journal in Brave)
Full work available at URL: https://doi.org/10.1007/s11139-021-00507-7
Gauss and Kloosterman sums; generalizations (11L05) Special values of automorphic (L)-series, periods of automorphic forms, cohomology, modular symbols (11F67) Langlands (L)-functions; one variable Dirichlet series and functional equations (11F66)
Cites Work
- Unnamed Item
- Unnamed Item
- Hybrid subconvexity bounds for \(L \left( \frac{1}{2}, \mathrm{Sym}^2 f \otimes g\right) \)
- The circle method and bounds for \(L\)-functions. IV: Subconvexity for twists of \(\mathrm{GL}(3)\) \(L\)-functions
- Weak subconvexity for central values of \(L\)-functions
- Automorphic distributions, \(L\)-functions, and Voronoi summation for \(\text{GL}(3)\)
- Bounds for automorphic \(L\)-functions
- Subconvex bounds on \(\mathrm{GL}_3\) via degeneration to frequency zero
- La conjecture de Weil. I
- Bounds for twisted symmetric square \(L\)-functions. III
- The Burgess bound via a trivial delta method
- Bounds for twisted symmetric square L-functions
- Subconvexity for twisted <i>L</i>-functions on GL(3)
- Character sums of composite moduli and hybrid subconvexity
- Sur le problème des diviseurs de Titchmarsh.
- Voronoi formulas on GL(n)
- A Burgess-like subconvex bound for twisted L-functions
- Hybrid bounds for twisted L-functions
- Voronoï summation for GLn: collusion between level and modulus
- The circle method and bounds for $L$-functions---II: Subconvexity for twists of ${\rm GL}(3)$ $L$-functions
- The circle method and bounds for 𝐿-functions—III: 𝑡-aspect subconvexity for 𝐺𝐿(3) 𝐿-functions
- Automorphic Forms and L-Functions for the GroupGL(n, R)
- Low lying zeros of families of \(L\)-functions
This page was built for publication: Hybrid subconvexity bounds for \(L(1/2,\operatorname{sym}^2 f \otimes \chi)\)