The Grothendieck and Picard groups of finite rank torsion free \(\mathfrak{sl}(2)\)-modules
DOI10.1007/s13398-022-01224-6OpenAlexW3163522409MaRDI QIDQ2121675
Carlos Tejero Prieto, Francisco Jose Plaza Martín
Publication date: 4 April 2022
Published in: Revista de la Real Academia de Ciencias Exactas, Físicas y Naturales. Serie A: Matemáticas. RACSAM (Search for Journal in Brave)
Full work available at URL: https://doi.org/10.1007/s13398-022-01224-6
Grothendieck group-Picard grouprational \(\mathfrak{sl}(2)\)-modulestorsion free \(\mathfrak{sl}(2)\)-modules
Representations of Lie algebras and Lie superalgebras, algebraic theory (weights) (17B10) Grothendieck groups (category-theoretic aspects) (18F30)
Cites Work
- Construction of simple non-weight \(\mathfrak{sl}(2)\)-modules of arbitrary rank
- Classification of simple sl(2)-modules and finite-dimensionality of the module of extensions of simple sl(2)-modules
- Krull-Schmidt categories and projective covers
- The irreducible representations of the Lie algebra sl(2) and of the Weyl algebra
- Extending representations of \(\mathfrak {sl}(2)\) to Witt and Virasoro algebras
- Exact categories
- On the Krull-Schmidt theorem with application to sheaves
- Symmetry, Representations, and Invariants
- Tensor Categories
- On the Endomorphism Ring of a Simple Module Over an Enveloping Algebra
- A survey of integral representation theory
- Algebraic \(K\)-theory
- Picard groups, Grothendieck rings, and Burnside rings of categories
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
This page was built for publication: The Grothendieck and Picard groups of finite rank torsion free \(\mathfrak{sl}(2)\)-modules