On Hoffman's \(t\)-values of maximal height and generators of multiple zeta values
From MaRDI portal
Publication:2134195
DOI10.1007/s00208-021-02209-3zbMath1504.11091OpenAlexW3164280652MaRDI QIDQ2134195
Publication date: 6 May 2022
Published in: Mathematische Annalen (Search for Journal in Brave)
Full work available at URL: https://doi.org/10.1007/s00208-021-02209-3
Related Items (2)
On variants of the Euler sums and symmetric extensions of the Kaneko-Tsumura conjecture ⋮ Evaluation of and period polynomial relations
Cites Work
- Mixed Tate motives over \(\mathbb{Z}\)
- Evaluation of the multiple zeta values \(\zeta(2,\ldots,2,3,2,\ldots,2)\)
- Motivic unipotent fundamental groupoid of \(\mathbb{G}_m \setminus \mu_N\) for \(N=2,3,4,6,8\) and Galois descents
- Mixed Tate motives and multiple zeta values
- Notes on motivic periods
- On multiple zeta values of level two
- Zeta functions connecting multiple zeta values and poly-Bernoulli numbers
- An odd variant of multiple zeta values
- Groupes fondamentaux motiviques de Tate mixte
This page was built for publication: On Hoffman's \(t\)-values of maximal height and generators of multiple zeta values