Quotients of the Bruhat-Tits tree by arithmetic subgroups of special unitary groups
From MaRDI portal
Publication:2134649
DOI10.1016/j.jpaa.2021.106996OpenAlexW3174431689MaRDI QIDQ2134649
Luis Arenas-Carmona, Giancarlo Lucchini Arteche, Benoit Loisel, Claudio Bravo
Publication date: 3 May 2022
Published in: Journal of Pure and Applied Algebra (Search for Journal in Brave)
Full work available at URL: https://arxiv.org/abs/2107.00589
Cohomology of groups (20J06) Linear algebraic groups over global fields and their integers (20G30) Other matrix groups over rings (20H25) Groups acting on trees (20E08) Algebraic functions and function fields in algebraic geometry (14H05) Cohomology of arithmetic groups (11F75)
Cites Work
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Algebraic function fields and codes
- Homological properties of certain arithmetic groups in the function field case
- Lattices in rank one Lie groups over local fields
- Strong approximation for semi-simple groups over function fields
- Die Kohomologie S-arithmetischer Gruppen über Funktionenkörpern
- On finite group actions on reductive groups and buildings
- A compactification of the Bruhat-Tits building
- Higher finiteness properties of reductive arithmetic groups in positive characteristic: the rank theorem.
- Computing quaternion quotient graphs via representations of orders
- The structure of the group \(G(k[t)\): variations on a theme of Soulé.]
- Schémas en groupes. III: Structure des schémas en groupes réductifs. Exposés XIX à XXVI. Séminaire de Géométrie Algébrique du Bois Marie 1962/64 (SGA 3), dirigé par Michel Demazure et Alexander Grothendieck. Revised reprint
- Reductive groups over a local field
- Schémas en groupes et immeubles des groupes classiques sur un corps local. II : groupes unitaires
- Serre’s generalization of Nagao’s theorem: An elementary approach