A characterization of nonautonomous attractors via Stone-Čech compactification
DOI10.12775/TMNA.2021.029zbMath1505.37034OpenAlexW4220808477MaRDI QIDQ2135291
Josiney A. Souza, Pedro F. S. Othechar
Publication date: 6 May 2022
Published in: Topological Methods in Nonlinear Analysis (Search for Journal in Brave)
Full work available at URL: https://doi.org/10.12775/tmna.2021.029
attractorlimit setsStone-Čech compactificationnonautonomous dynamical systemprolongational limit sets
Attractors and repellers of smooth dynamical systems and their topological structure (37C70) Extensions of spaces (compactifications, supercompactifications, completions, etc.) (54D35) Gradient-like behavior; isolated (locally maximal) invariant sets; attractors, repellers for topological dynamical systems (37B35) Index theory for dynamical systems, Morse-Conley indices (37B30) Topological dynamics of nonautonomous systems (37B55)
Cites Work
- Chain recurrence in \(\beta \)-compactifications of topological groups
- Topological dynamics and linear differential systems
- The topological dynamics of semigroup actions
- Stone-Cech Compactifications of Products
- Construction of nonautonomous forward attractors
- Random attractors for the 3d stochastic navier-stokes equation with multiplicative white noise
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
This page was built for publication: A characterization of nonautonomous attractors via Stone-Čech compactification