Composition operators on Herz-type Triebel-Lizorkin spaces with application to semilinear parabolic equations
From MaRDI portal
Publication:2137899
DOI10.1007/s43037-022-00178-6OpenAlexW4221104996MaRDI QIDQ2137899
Publication date: 11 May 2022
Published in: Banach Journal of Mathematical Analysis (Search for Journal in Brave)
Full work available at URL: https://arxiv.org/abs/2201.06055
Nonlinear parabolic equations (35K55) Sobolev spaces and other spaces of ``smooth functions, embedding theorems, trace theorems (46E35) Particular nonlinear operators (superposition, Hammerstein, Nemytski?, Uryson, etc.) (47H30)
Related Items
On the composition operators on Besov and Triebel–Lizorkin spaces with power weights, Mixed-norm Herz spaces and their applications in related Hardy spaces, Semilinear parabolic equations in Herz spaces
Cites Work
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Homogeneous Herz spaces and regularity results
- Weighted Besov and Triebel spaces: Interpolation by the real method
- The Navier-Stokes equations and weak Herz spaces
- Perturbations of self-similar solutions
- Theory of Besov spaces
- Fonctions qui opèrent sur les espaces de Besov et de Triebel. (Functions which operate on Besov and Triebel spaces.)
- Superposition operators and functions of bounded \(p\)-variation
- Le calcul fonctionnel dans les espaces de Sobolev. (Functional calculus in Sobolev spaces)
- Composition operators on Lizorkin-Triebel spaces
- Function spaces of variable smoothness and integrability
- Solutions for semilinear parabolic equations in \(L^ p\) and regularity of weak solutions of the Navier-Stokes system
- Mapping properties of nonlinear operators in spaces of Triebel-Lizorkin and Besov type
- Semilinear evolution equations in Banach spaces
- Calcul fonctionnel dans certains espaces de Besov. (Functional calculus in certain Besov spaces)
- Cauchy problem for semilinear parabolic equations with initial data in \(H_p^s(\mathbb{R}^n)\) spaces
- Interpolation of Herz-type Hardy spaces
- Herz-type Sobolev and Bessel potential spaces and their applications
- Applications of Herz-type Triebel-Lizorkin spaces
- Semilinear parabolic equations with distributions as initial data
- Gagliardo-Nirenberg, composition and products in fractional Sobolev spaces
- Sobolev embeddings for Herz-type Triebel-Lizorkin spaces
- The nonlinear heat equation involving highly singular initial values and new blowup and life span results
- Equivalent norms of Herz-type Besov and Triebel-Lizorkin spaces
- Boundedness of some sublinear operators on Herz spaces
- A nonlinear heat equation with singular initial data
- A semilinear heat equation with initial data in negative Sobolev spaces
- Continuity of composition operators in Sobolev spaces
- Sur les fonctions qui operent sur l'espace \(\hat A^ 2\)
- Decompositions of non-homogeneous Herz-type Besov and Triebel-Lizorkin spaces
- Hybrid function spaces, heat and Navier-Stokes equations
- Herz-type Triebel-Lizorkin spaces. I
- Superposition in homogeneous and vector valued Sobolev spaces
- Atomic decomposition for weighted Besov and Triebel-Lizorkin spaces
- Complete Characterization of Functions Which Act, Via Superposition, on Sobolev Spaces
- On boundedness of superposition operators in spaces of Triebel-Lizorkin type
- Embedding and multiplier theorems for 𝐻^{𝑃}(𝑅ⁿ)
- Semilinear heat equations and the navier-stokes equation with distributions in new function spaces as initial data
- Necessary conditions on composition operators acting on Sobolev spaces of fractional order. The critical case 1<s<n/p
- Conditions on composition operators which map a space of Triebel-Lizorkin type into a Sobolev space. The case 1 < s < n/p. II
- Necessary conditions on composition operators acting between Besov spaces. The case 1 < s < n/p. III
- NON-UNIQUENESS FOR A CRITICAL NON-LINEAR HEAT EQUATION
- On a generalized nonlinear heat equation in Besov and Triebel-Lizorkin spaces
- Pointwise Multiplication of Besov and Triebel‐Lizorkin Spaces
- Complex interpolation of Herz‐type Triebel–Lizorkin spaces
- Regularity of the symbolic calculus in Besov algebras
- Herz spaces and summability of Fourier transforms
- An axiomatic approach to function spaces, spectral synthesis, and Luzin approximation
- Characterizations of weighted Besov and Triebel-Lizorkin spaces via temperatures
- Multiplication on Besov and Triebel-Lizorkin spaces of power weights