Polynomial approximation of quantum Lipschitz functions
From MaRDI portal
Publication:2141274
DOI10.25537/dm.2022v27.765-787MaRDI QIDQ2141274
Konrad Aguilar, Jens Kaad, David Kyed
Publication date: 25 May 2022
Published in: Documenta Mathematica (Search for Journal in Brave)
Full work available at URL: https://arxiv.org/abs/2104.04317
Podleś sphereBerezin transformspectral triplesquantum metric spacesquantum Gromov-Hausdorff distancefuzzy spheres
Noncommutative geometry in quantum theory (81R60) Geometry of quantum groups (58B32) Approximation by polynomials (41A10) Operator algebra methods applied to problems in quantum theory (81R15) Other ``noncommutative mathematics based on (C^*)-algebra theory (46L89) States of selfadjoint operator algebras (46L30) Quantum theory (81-XX)
Related Items
Cites Work
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Free probability and random matrices
- Quantum spheres
- Twisted \(\text{SU}(2)\) group. An example of a non-commutative differential calculus
- Groups of polynomial growth and expanding maps. Appendix by Jacques Tits
- Metrics on states from actions of compact groups
- Matricial quantum Gromov--Hausdorff distance.
- Noncommutative solenoids
- The Podleś sphere as a spectral metric space
- Metrics on state spaces
- Theory of operator algebras. II
- Spectral truncations in noncommutative geometry and operator systems
- Order-unit quantum Gromov--Hausdorff distance
- An invitation to quantum groups and duality. From Hopf algebras to multiplicative unitaries and beyond
- Approximation of quantum tori by finite quantum tori for the quantum Gromov--Hausdorff distance
- Gromov-Hausdorff convergence of state spaces for spectral truncations
- Unitaires multiplicatifs et dualité pour les produits croisés de $\mathrm{C}^*$-algèbres
- The quantum Gromov-Hausdorff propinquity
- The fuzzy sphere
- Gromov-Hausdorff distance for quantum metric spaces
- Noncommutative geometry and reality
- Dynamics of compact quantum metric spaces
- Co-amenability of compact quantum groups