The Podleś spheres converge to the sphere
From MaRDI portal
Publication:2142992
DOI10.1007/s00220-022-04363-4zbMath1498.46073arXiv2102.12761OpenAlexW4220835577WikidataQ114230921 ScholiaQ114230921MaRDI QIDQ2142992
David Kyed, Konrad Aguilar, Jens Kaad
Publication date: 30 May 2022
Published in: Communications in Mathematical Physics (Search for Journal in Brave)
Full work available at URL: https://arxiv.org/abs/2102.12761
Related Items (3)
Convergence of Fourier truncations for compact quantum groups and finitely generated groups ⋮ Convergence of inductive sequences of spectral triples for the spectral propinquity ⋮ Gromov-Hausdorff convergence of spectral truncations for tori
Cites Work
- A twisted spectral triple for quantum \(SU(2)\)
- The dual Gromov-Hausdorff propinquity
- The Dirac operator on \(\text{SU}_{q}(2)\)
- Quantum spheres
- Twisted \(\text{SU}(2)\) group. An example of a non-commutative differential calculus
- Groups of polynomial growth and expanding maps. Appendix by Jacques Tits
- Metrics on states from actions of compact groups
- Matricial quantum Gromov--Hausdorff distance.
- Noncommutative solenoids
- Noncommutative Riemannian and spin geometry of the standard \(q\)-sphere
- The Podleś sphere as a spectral metric space
- Metrics on state spaces
- The Dirac operator on the fuzzy sphere
- Gromov-Hausdorff convergence of quantised intervals
- Spectral truncations in noncommutative geometry and operator systems
- Order-unit quantum Gromov--Hausdorff distance
- Bounded-Lipschitz distances on the state space of a \(C^*\)-algebra
- Approximation of quantum tori by finite quantum tori for the quantum Gromov--Hausdorff distance
- A local index formula for the quantum sphere
- Gromov-Hausdorff convergence of state spaces for spectral truncations
- Quantum groups and noncommutative geometry
- Quantum ultrametrics on AF algebras and the Gromov–Hausdorff propinquity
- On Spectral Triples on Crossed Products Arising From Equicontinuous Actions
- A residue formula for the fundamental Hochschild 3-cocycle for SUq(2)
- Matrix geometries and fuzzy spaces as finite spectral triples
- The quantum Gromov-Hausdorff propinquity
- The Dirac operator on compact quantum groups
- Gromov-Hausdorff distance for quantum metric spaces
- Déformations de $C\sp*$-algèbres de Hopf
- Dynamics of compact quantum metric spaces
- Compact metric spaces, Fredholm modules, and hyperfiniteness
- Locally compact quantum groups
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
This page was built for publication: The Podleś spheres converge to the sphere