Measure equivalence classification of transvection-free right-angled Artin groups
From MaRDI portal
Publication:2146732
DOI10.5802/jep.199OpenAlexW4287641357MaRDI QIDQ2146732
Publication date: 21 June 2022
Published in: Journal de l'École Polytechnique -- Mathématiques (Search for Journal in Brave)
Full work available at URL: https://arxiv.org/abs/2010.03613
Geometric group theory (20F65) Braid groups; Artin groups (20F36) Algebraic ergodic theory, cocycles, orbit equivalence, ergodic equivalence relations (37A20) Classification of factors (46L36)
Related Items (3)
Orbit equivalence rigidity of irreducible actions of right-angled Artin groups ⋮ Cocycle superrigidity from higher rank lattices to \(\mathrm{Out}{(F_N)}\) ⋮ Continuous orbit equivalence rigidity for left-right wreath product actions
Cites Work
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Integrable measure equivalence for groups of polynomial growth
- Metric geometry of locally compact groups
- The Poisson boundary of CAT(0) cube complex groups.
- Integrable measure equivalence and rigidity of hyperbolic lattices
- Hereditary conjugacy separability of right-angled Artin groups and its applications.
- Groups of given intermediate word growth.
- Quasi-isometric classification of some high dimensional right-angled Artin groups.
- Group measure space decomposition of \(\text{II}_{1}\) factors and \(\text W^{*}\)-superrigidity
- Divergence and quasimorphisms of right-angled Artin groups.
- Invariants of orbit equivalence relations and Baumslag-Solitar groups
- Free products, orbit equivalence and measure equivalence rigidity
- Finite index subgroups of graph products.
- The asymptotic geometry of right-angled Artin groups. I.
- Measure equivalence rigidity of the mapping class group
- On a class of II\(_1\) factors with at most one Cartan subalgebra
- Property \(A\) and \(\text{CAT}(0)\) cube complexes.
- Strong rigidity for ergodic actions of semisimple Lie groups
- Groups generating transversals to semisimple Lie group actions
- Indecomposability of equivalence relations generated by word hyperbolic groups
- Algorithms and geometry for graph products of groups
- Tree lattices. With appendices by H. Bass, L. Carbone, A. Lubotzky, G. Rosenberg, and J. Tits.
- Random walks and boundaries of CAT(0) cubical complexes
- Commensurability of groups quasi-isometric to RAAGs
- Groups quasi-isometric to right-angled Artin groups
- Automorphisms of graph groups.
- \(\ell^2\) invariants of equivalence relations and groups
- Parabolic subgroups of Artin groups of type FC.
- Embeddability between right-angled Artin groups..
- Cost of equivalence relations and groups
- Gromov's measure equivalence and rigidity of higher rank lattices
- Orbit equivalence rigidity
- Amenability, bi-Lipschitz equivalence, and the von Neumann conjecture
- Contracting isometries of CAT(0) cube complexes and acylindrical hyperbolicity of diagram groups
- Unique Cartan decomposition for \(\mathrm{II}_1\) factors arising from arbitrary actions of free groups
- Quasi-isometry classification of right-angled Artin groups that split over cyclic subgroups
- On hierarchical hyperbolicity of cubical groups
- Lattice envelopes
- Tits alternatives for graph products
- Top-dimensional quasiflats in CAT(0) cube complexes
- Quasi-isometric classification of right-angled Artin groups. I: The finite out case
- Automorphisms of 2-dimensional right-angled Artin groups.
- Orbit equivalence rigidity and bounded cohomology
- Parabolic and quasiparabolic subgroups of free partially commutative groups.
- Quasi-isometric classification of graph manifold groups.
- Special cube complexes
- An introduction to right-angled Artin groups.
- The median class and superrigidity of actions on CAT(0) cube complexes
- A survey of Measured Group Theory
- Orbit Equivalence and Measured Group Theory
- Groups acting on spaces of non-positive curvature
- Rigidity of amalgamated free products in measure equivalence
- The Furstenberg–Poisson boundary and CAT(0) cube complexes
- On Groups of Measure Preserving Transformations. I
- OEandW* superrigidity results for actions by surface braid groups
- On a class of II<sub xmlns:m="http://www.w3.org/1998/Math/MathML" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">1</sub> factors with at most one Cartan subalgebra, II
- Isomorphisms of Graph Groups
- Subrelations of ergodic equivalence relations
- Ergodic theory of amenable group actions. I: The Rohlin lemma
- Ergodic Equivalence Relations, Cohomology, and Von Neumann Algebras. II
- THE $\eltwo$-COHOMOLOGY OF ARTIN GROUPS
- A Generating Set for the Automorphism Group of a Graph Group
- Baumslag-Solitar groups, relative profinite completions and measure equivalence rigidity
- The Haagerup Property for Discrete Measured Groupoids
- The geometry of the curve graph of a right-angled Artin group
- The mapping class group from the viewpoint of measure equivalence theory
- On Groups of Measure Preserving Transformations. II
- Examples of groups that are measure equivalent to the free group
This page was built for publication: Measure equivalence classification of transvection-free right-angled Artin groups