The area under the ROC curve as a measure of clustering quality
From MaRDI portal
Publication:2147411
DOI10.1007/s10618-022-00829-0zbMath1497.62150arXiv2009.02400OpenAlexW3083050659WikidataQ114690136 ScholiaQ114690136MaRDI QIDQ2147411
Ivan G. Costa, Pablo A. Jaskowiak, Ricardo J. G. B. Campello
Publication date: 20 June 2022
Published in: Data Mining and Knowledge Discovery (Search for Journal in Brave)
Full work available at URL: https://arxiv.org/abs/2009.02400
area under curvereceiver operating characteristicsarea under curve for clusteringAUC/ROCclustering validationqualitative/visual clustering evaluation
Classification and discrimination; cluster analysis (statistical aspects) (62H30) Learning and adaptive systems in artificial intelligence (68T05)
Uses Software
Cites Work
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- ROC curves in cost space
- Silhouettes: a graphical aid to the interpretation and validation of cluster analysis
- A Monte Carlo study of thirty internal criterion measures for cluster analysis
- Validity index for crisp and fuzzy clusters
- Well-Separated Clusters and Optimal Fuzzy Partitions
- Measuring the Power of Hierarchical Cluster Analysis
- Relative clustering validity criteria: A comparative overview
- Measures of Association for Cross Classifications
- A simple generalisation of the area under the ROC curve for multiple class classification problems
- On clustering validation techniques